
Triangulation of 3D Domains
(with Quad-Hexa Meshing Support)

User Guide

November 27, 2016

Daniel Rypl

Czech Technical University in Prague
Faculty of Civil Engineering, Department of Mechanics

Thákurova 7, 166 29, Prague
Czech Republic

e-mail: drypl@fsv.cvut.cz
http://mech.fsv.cvut.cz/˜dr/dr.html

Contents

1 Model Representation 3

2 Mesh Size Specification 5

3 Model Input Data Format 7

3.1 Input Record of a VERTEX . 9

3.2 Input Records of a CURVE . 12

3.3 Input Records of a SURFACE . 18

3.4 Input Record of a PATCH . 23

3.5 Input Record of a SHELL . 26

3.6 Input Record of a REGION . 28

3.7 Input Record of an INTERFACE . 31

3.8 Input Records Related to Boundary Mesh 33

3.8.1 Input Record of Boundary Mesh File 33

3.8.2 Input Record of Boundary Mesh VERTEX 33

3.8.3 Input Record of Boundary Mesh CURVE 33

3.8.4 Input Record of Boundary Mesh SURFACE 34

4 Boundary Mesh Input Data Format 36

5 Mesh Size Input Data Format 37

6 Background Mesh Input Data Format 38

7 Mesh Output Format 40
7.1 Binary Mesh Output . 52

8 Command Line Options 53

9 Terminal Output 62

10 Quality Evaluation 64

11 Warnings and Error Messages 67

12 Input File Examples 68

12.1 Bus Shelter . 68

Appendix 71

2

A Modelling of Conics 71

A.1 Circular Arc . 71

A.1.1 Quadratic Curve . 71

A.1.2 Cubic Curve . 71

A.2 Elliptic Arc . 72

A.2.1 Quadratic Curve . 72

A.2.2 Cubic Curve . 72

A.3 Parabolic Arc . 73

A.3.1 Quadratic Curve . 73

A.3.2 Cubic Curve . 73

A.4 Hyperbolic Arc . 74

A.4.1 Quadratic Curve . 74

A.4.2 Cubic Curve . 74

B Modelling of Rotational Surfaces 75

B.1 Quadratic Expansion . 75

B.2 Cubic Expansion . 76

C Run-Time Visualization 77

3

1 Model Representation

The model is described by a boundary representation and consists of the following model
entities: vertices, curves, surfaces, patches, shells and regions. Topologically, each
region is formed by a set of not self-intersecting boundary surfaces, patches, and shells,
each of which is bounded by a set of curves. Each curve is given by two end vertices.
Moreover, each boundary surface, patch, and shell points out to the regions on the side of
its outer and inner normal. A curve keeps list of surfaces, patches, and shells sharing that
curve. Similarly, a vertex stores the list of curves sharing that vertex. This basic topology
is further restricted by the geometry of model entities. Both curves and surfaces are based
on free-form representation in terms of tensor-product polynomial entities. This limits the
number of curves bounding a surface to four. The number of curves bounding a patch or
a shell is not limited (but must be at least two). While the patch is a planar entity (trimmed
plane) or a nonplanar entity close to a plane, the shell is constrained to a background surface
(trimmed surface). To enhance the modelling capability an entity-to-entity fixation concept
has been introduced. Generally, each model entity may be fixed to another model entity
of the same or higher dimension. However, the fixed entity is not allowed to coincide with
the boundary of the parent entity. Each model entity keeps the list of entities fixed to it.
No further topological information is required for the description of a valid non-manifold
domain of almost arbitrary complexity.

The model also offers representation of interfaces between pairs of geometrically and topo-
logically identical model entities using the model interface entities. Interface entity is
bounded by two model entities (except regions) of the same type. Geometry of interface
entity is defined as the space between the pairs of bounding model entities. Note that there
are no restrictions on this space.

Currently, rational Bezier entities are employed for free-form curves and surfaces representa-
tion. This allows to represent exactly conics and quadrics by entities starting with an order
of three (quadratic curves and biquadratic surfaces).

The rational Bezier curve has the form

P (t) =

∑n
i=0 ωiP iB

n
i (t)∑n

i=0 ωiB
n
i (t)

, (1)

where P (t) is the point on the curve, P i are Bezier control points, ωi are weights of Bezier
control points, Bn

i (t) stand for Bernstein polynomials, t denotes an independent variable
varying in range from 0 to 1, and n is the curve degree. The curve order is equal to n + 1.
P 0 and P n correspond to model vertices while the remaining points form the control polygon
of the curve. They determine the bow of the curve and need not generally lie on the curve.
The first and last segments of the control polygon coincide with the curve tangent in the
starting and ending vertices respectively.

4

The rational Bezier surface can be written in a similar form

P (u, v) =

∑n
i=0

∑m
j=0 ωijP ijB

n
i (u)Bm

j (v)∑n
i=0

∑m
j=0 ωijB

n
i (u)Bm

j (v)
, (2)

where P (u, v) is the point on the surface, P ij are Bezier control points, ωij are weights of
Bezier control points, Bn

i (u) and Bm
j (v) stand for Bernstein polynomials, u and v denote

independent parameters varying in range from 0 to 1, and n and m are surface degrees
(orders are equal to n + 1 and m + 1) in u and v parametric directions, respectively. If the
control points are arranged in a matrix (n+ 1)× (m+ 1) then the corner points correspond
to model vertices, the side points correspond to control polygons of model curves bounding
the surface, and the remaining points form the control polygon of the surface and need not
generally lie on the surface.

Bernstein polynomial can be expressed as

Bn
i (t) =

(
n

i

)
ti(1− t)n−i, (3)

or recursively as

Bn
i (t) = (1− t)Bn−1

i (t) + tBn−1
i−1 (t), (4)

where B0
0 = 1.

The ordinary Bezier entities can be derived from rational Bezier entities when all weights
are set to 1.

Two types of model entities are distinguished. The physical ones which are designated
for the actual discretization and the virtual ones which serve as auxiliary for geometry
description or mesh size specification. Note that there are some restrictions on the fixation
between virtual and physical entities.

5

2 Mesh Size Specification

Three levels of mesh size specification are considered

• the global mesh size specification,

• the local mesh size specification, and

• the adaptive mesh size specification.

The global mesh size specification uses global weight functions to control the mesh size
description over the domain. The local mesh size specification concept prescribes the desired
mesh size variation on model entities. In the adaptive mesh size specification strategy, various
mesh size sources, built according to the preceding problem analysis, are used.

Currently only the local and adaptive mesh size specifications are implemented. The local
mesh size specification consists of three concepts

• the required mesh size specification,

• the curve count-based specification, and

• the curvature-based mesh size control.

The first concept is used to explicitly prescribe the mesh size (using keyword size) at indi-
vidual model entities. Mesh size specification is stored at each vertex and at each control
point of any curve or surface. These values are used to extract the mesh size specification
on a curve or surface. Moreover, each model entity (except vertices) stores an upper bound
limit on the mesh size which is not allowed to be exceeded.

Similar expressions to the ones describing the geometry of rational Bezier curves and surfaces
are used to interpolate the local mesh size specification at control points over the curve and
surface. The mesh size extracted from a curve mesh size specification has the form

msz(t) =

∑n
i=0 ωimsziB

n
i (t)∑n

i=0 ωiB
n
i (t)

, (5)

where msz(t) is the required mesh size at point P (t) on the curve, mszi are the mesh size
specifications at Bezier control points, and the other symbols have the same meaning as in
Eq. (1). A similar formula can be written for the extraction of the required mesh size on
a surface

msz(u, v) =

∑n
i=0

∑m
j=0 ωijmszijB

n
i (u)Bm

j (v)∑n
i=0

∑m
j=0 ωijB

n
i (u)Bm

j (v)
, (6)

where msz(u, v) is the required mesh size at point P (u, v) on the surface, mszij are the
mesh size specifications at Bezier control points. The remaining variables have the the same
meaning as in Eq. (2).

In the second concept, the upper bound limit on the mesh size along a curve is defined via
the desired number of segments on the curve (using keywords density, nosplit and count).

6

Finally, the last concept is employed to enable an accurate representation of a curve or surface
by its discretization even if no particular mesh size is required. The criterion is based on
the ratio (curvature rate) between the appropriate mesh size and the radius of curvature at
a given location on the curve or surface. The default ratio is equal to 1, which corresponds
to the discretization of a circle to 6 segments of the same length equal to the radius of the
circle. The curvature-based mesh size control is performed implicitly. Its suppression may
result in an unrecoverable error during mesh generation.

The adaptive mesh size specification is based on a background mesh with the mesh size spec-
ification at nodes and linear interpolation over the elements (edges, triangles, quadrilaterals,
tetrahedra, pyramids, wedges, and hexahedra). The background mesh is independent of the
actual model and may cover the whole model or only some of its parts. The format of the
background mesh is described in Section 6.

7

3 Model Input Data Format

The input data consist of a set of keywords and appropriate numeral or literal values asso-
ciated with them. The first keyword on the line is specific and is obligatory. The order of
following keywords is more or less compulsory but must respect some built-in logic. A unique
positive identification number has to be assigned to each model entity. This number is then
used to reference this model entity. Note that the numbering of model entities of different
type is independent. The individual model entities must be ordered in the input file in such
a way that any referenced model entity must already exist. Keywords may be typed in
upper case, lower case, or mixed case. Everything on a line behind a # sign is treated as
a comment. Any number of blank spaces may be used between the keywords and numbers.
Empty lines are ignored. Too long lines may be split using the backslash. Note that each
part of the splitted commented line must be marked by the # sign to comment it thoroughly.
No further input data formating is required.

Note that some features are enabled or disabled if the source code is compiled with certain
directives. The following table gives a list of compilation directives and associated input file
keywords:

Compiler directive Keyword(s) in input record of

T3D INTERFACE all interface

T3D COINCIDE coincide vertex, curve, surface,

patch, and shell

T3D CURVE SWAPPING swap, angle curve

T3D CURVE SMEARING smear, angle curve

T3D MIRRORING mirror, weak, curve, surface, patch, and shell

simple, octree

T3D PROPERTY nodeprop node, curve, surface,

patch, shell, and region

T3D PROPERTY elemprop curve, surface, patch,

shell, and region

T3D PROPERTY elemgroup curve, surface, patch,

shell, and region

T3D QUAD HEXA MESHING quad surface, patch and shell

T3D QUAD HEXA MESHING hexa region

T3D QUAD HEXA MAPPING map, lcs surface, patch, shell, and region

T3D QUAD HEXA MAPPING duplicate curve, surface, patch and shell

T3D QUAD HEXA MAPPING transition curve

T3D QUAD HEXA MAPPING diagonal surface, patch, and shell

8

Compiler directive Keyword(s) in input record of

T3D QUAD HEXA ISO iso, dir patch and region

T3D QUAD HEXA ISO diaginal patch

T3D EXTRUDE extrude, weak, region

simple, octree

T3D NONPLANAR PATCH epsilon patch

T3D MASTER SLAVE master vertex, curve, surface, patch and
shell

slave

nomaster

noslave

T3D MASTER SURFACE master surface, patch and shell

T3D BND MESH all bnd mesh

T3D BND MESH all bnd vertex, bnd curve,

and bnd surface

T3D QUAD HEXA SUPPORT bnd quads, bnd surface

bnd quad,

normal quad

Note that compiler directives T3D INTERFACE, T3D QUAD HEXA MESHING, T3D
QUAD HEXA MAPPING, T3D QUAD HEXA ISO and T3D EXTRUDE are ignored if
directive T3D QUAD HEXA SUPPORT is not defined. Envoke T3d with –dir command
line option to print the overview of compilation directives.

Note that quadratic bubble elements are disabled unless the code is compiled with
T3D BUBBLE ELEMENT directive.

The following notation will be used in the description of input records for individual model en-
tities: { } - obligatory parameter

[] - optional parameter

() - repeated parameter

in# - integer number

fp# - floating point number

| - logical XOR

|| - logical OR

\ - line break

@ - single quoted string

Note that there exists a limit on the length of the input file records, unless compiler directive
T3D FUNCTION INPUT is used. Split the too long lines in the input file using the line
break character \. Check the input file line length limit by envoking T3d with –dir command
line option before processing input file with very long records.

9

3.1 Input Record of a VERTEX

Vertex in# { xyz fp# fp# fp# || (fixed { vertex in# | \
curve in# [t fp#] | \
surface in# [uv fp# fp#] }) } \

[size { fp# | def | uni | ver | cur | sur } [* fp#]] \
[weight fp#] \
[factor fp#] \
[property in#] \
[virtual] \
[hidden] \
[output { yes | no }] \
[coincide vertex (in#)] \
[slave | master] \
[noslave] \
[nomaster] \
[nodeprop @]

Vertex, as the compulsory keyword, is followed by its identification number. A vertex may
be determined either by three coordinates preceded by keyword xyz or by fixation to either
of vertex, curve, or surface. This is expressed by keyword fixed followed by the appropriate
entity keyword (vertex, curve, or surface) and its identification number. When the fixation
to curve or surface is used parametric coordinates preceded by keyword t in the case of curve
or keyword uv in the case of surface must be provided otherwise the parametric position of
the vertex on the curve or surface is calculated using its coordinates specified after keyword
xyz or inherited from the parent vertex. If the position of the vertex on a parent entity is
overdetermined the redundant information is used to avoid ambiguity of the vertex position.
Note that the original position (given by real coordinates) of the vertex and its position on
the parent entity (given by parametric coordinates) are not allow to differ by more than
user defined epsilon specified on the command line (see command line option –e). A vertex
may be fixed simultaneously to a vertex and curve or to a vertex and surface. In this case,
repeated use of keyword fixed is allowed. A size specification may be assigned to a vertex.
This can be done using keyword size followed by a concrete number or a special keyword,
optionally followed by a multiplication factor preceded by an asterisk. Special keyword def
stands for a default mesh size specified on the command line when running the program
(see command line option –d), uni denotes the uniform mesh size specified on the command
line (see command line option –u), ver, cur, and sur is used in the case of fixation when
the mesh size is to be the same as on the appropriate parent model entity (vertex, curve,
or surface) at vertex location. By default, a vertex fixed to a parent entity inherits mesh
size from that entity. In the case of a multiple fixation to vertex and curve or surface the
mesh size of parent curve or surface is used. If no size is specified and the vertex is not
fixed to any entity the default size from command line is used. Only positive mesh size
is allowed at vertices. Note that the size assigned to a vertex is used for interpolation of
mesh size over curves and surfaces sharing that vertex. The unit weight is assumed for all
non-fixed vertices unless a weight is specified after keyword weight. Only positive weight

10

specification is accepted. A vertex fixed to a parent entity inherits weight from that entity.
Note that this inherited weight can be overridden by new weight specification (keyword
weight) only in the case of vertex to vertex fixation. Keyword factor is used to specify the
vertex mesh size multiplication factor. Note that this factor is not used when interpolating
mesh size specification over curves and surfaces sharing the vertex. Setting it to zero will
cause excluding this vertex from local mesh size control. Negative mesh size factors are
not accepted. Default value of mesh size factor is equal to 1. An integer property number
may be assigned to a vertex after keyword property. Keyword virtual marks a vertex as
virtual. Keyword hidden marks it as a hidden one, which means that the location of the
mesh node associated with this vertex is not fixed and may change during the smoothing
process. The output of node generated at vertex position may be enforced or suppressed
by setting yes or no after output keyword. By default, each physical non-hidden vertex is
designated for output, except those fixed vertices with no physical ancestor designated for
output. Suppressed output for a vertex bounding a physical curve or fixed to a physical
curve designated for output is ignored. If generation of elements on a model entity between
the vertex being just defined and other close vertices (already defined and bounding that
entity) is to be prevented, the other vertices should be specified after keywords coincide
vertex. Neither from the coinciding vertices is allowed to be fixed to physical vertex or
vertex with physical ancestor. Keywords slave and master are designated (but not limited
to) for use with structured meshes to extend the modelling capabilities of otherwise limited
topology concept. A vertex may be marked as slave to enable merging of separate meshes
or as master to enable its fixing to a model entity without explicit fixation declaration. If
keyword slave is used the mesh space is searched for the nearest node (not connected by
an edge to the node classified to the just defined vertex) which is, if sufficiently close, used
to replace in the mesh connectivity the node classified to the just defined vertex. Note
that nodes classified to model entity marked either slave or nomaster are excluded from the
search. Similarly, keyword master enforced search through the mesh space for the nearest
node (classified to model entity marked neither master nor noslave and not connected to
the nodes classified to the just defined vertex) which is, if sufficiently close, replaced in the
mesh connectivity by the node classified to the just defined vertex. The proximity criterion
is based on the comparison of the distance between the corresponding nodes and 10 % of
the average mesh size required at location of the nodes. If the distance of the next closest
candidate from the node classified to the just defined vertex is not larger than the distance
between the corresponding nodes by at least 1 % of the local mesh size, the shortest edge
connected to any of corresponding nodes is identified. If the 10 % of the length of that edge
is smaller then the difference between the distances of the first two candidates from the node
classified to the just defined vertex, an error concerning ambiquity is issued. Note that the
local mesh size is derived from the octree and can be therefore much different from both
the mesh spacing prescribed at the vertex and the real mesh spacing (e.g. when mapping is
applied). This can lead to master/slave node identification failure which can be prevented
by appropriate mesh size specification. Keyword nomaster can be used to prevent node at
the just defined vertex to replace node classified to an entity marked as slave. Similarly,
keyword noslave can be employed to prevent node at the just defined vertex to be replaced
by the node classified to an entity marked as master. Note that except simultaneous use of
keywords slave and master, all master-slave related keywords can be used together in any
combination. If the slave vertex is marked as coinciding with other vertices, the master

11

node is searched only at these coinciding vertices. Note that similar behaviour does not hold
for master vertex which is coinciding with other vertices, in which case ordinary search is
performed. Nesting of master-slave relations is not supported. This implies that a particular
node cannot be merged simultaneously with a master vertex and a slave vertex. Note that
when using master or slave relationship the output of element boundary element entities
and boundary associated elements (see Sections 7 and 8 for details) are not fully consistent
(because the classification of mesh entities to model entities is overriden by the slave and
master relationships). Keyword nodeprop (a supplement to property specification) defines
a single quoted string that is assigned to the vertex and that relates to the node at the
vertex. Note that this string is not part of the output and can be accessed only via special
function call (when T3d is executed as a subroutine).

In the current implementation, the keyword hidden is ignored.

12

3.2 Input Records of a CURVE

Curve in# { vertex in# in# } \
[order in# || fixed { curve | surface } in#] \
[size { fp# | def | uni | cur | sur } [* fp#]] \
[density { fp# | def } [* fp#]] \
[factor fp#] \
[rate { fp# | def } [* fp#]] \
[nosplit fp#] \
[property in#] \
[virtual] \
[hidden] \
[polysize ([* in#] { fp# | def | uni })] \
[count in#] \
[output [elem | node] { yes | no }] \
[coincide curve (in#)] \
[bassoc { yes | no }] \
[swap { yes | no } [angle fp#]] \
[smear { yes | no } [angle fp#]] \
[mirror in# [weak | simple] [octree { yes | no }]] \
[duplicate in#] \
[equidistant] \
[transition { fp# | def } { fp# | def }] \
[slave | master] \
[noslave] \
[nomaster] \
[nodeprop @] \
[elemprop @] \
[elemgroup in#]

Polygon in# { xyz fp# fp# fp# | poly in# } \
[size { fp# | def | uni | cur } [* fp#]] \
[weight fp#]

Polyend

Curve, as the compulsory keyword, is followed by its identification number. Identification
numbers of the starting and ending vertices are specified after keyword vertex and determine
the curve orientation. The curve order may be specified after keyword order. The curve
may be fixed to a curve or to a surface which is expressed by keyword fixed followed by
the appropriate entity keyword (curve, or surface) and its identification number. If the
curve order is not provided and the curve is not fixed to any entity the default value 2
is used as the order and no consequent polygon records are expected. When the curve is
fixed to an entity, the curve order may but needs not be specified. In the former case,
curve order must be greater or equal to the order of the appropriate parent entity or set
to zero (the order of the parent entity is used in that case). When the curve is fixed to

13

a surface its end vertices must lie on the same parametric curve of the surface (the user
supplied epsilon is used as a tolerance) and must be fixed to surface itself or to a curve top
parent of which is fixed to the surface. A physical curve fixed to a physical solid surface
is not allowed to be intersected by another physical curve fixed to the same surface. The
orientation of the fixed curve is independent of the orientation of the parent model entity.
The size specification preceded by keyword size is also similar to the one in Section 3.1 but
two differences should be mentioned. Firstly, the size specification is treated as an upper
bound of the required size extracted from the mesh size specification of curve control points
and secondly, if the specification is missing or zero value is specified, no default value is
used and the upper bound limit is not applied (unless a nonzero value is propagated from
any incident entity of next higher dimension). For all model entities, the (nonzero) size
is recursively propagated to boundary entities of the next lower dimension until a smaller
(nonzero) size is encountered. Keyword density controls the relative mesh density along
the curve by setting the upper bound of the curve mesh size as the ratio between the length
of the curve and given value (generally corresponding to desired number of segments) which
is specified as a concrete number or as default value (controlled by the command line option
–t) using a special keyword def, optionally followed by a multiplication factor preceded by
an asterisk. For example, using value 0.5 means that the mesh size around the curve will be
set to the double of the curve length. The value of the density has no upper bound limit and
must not be negative. If the curve mesh size is specified in multiple ways (for example using
the density specification together with the mesh size interpolated from points of control
polygon), the smaller nonzero value is considered at each particular location. Keyword
factor specifies the curve mesh size multiplication factor which is applied to both curve
mesh size specification and mesh size extracted from curve control points as well. When set
to zero, the curve is excluded from local mesh size control. Keyword rate is used to define
the accuracy of the geometrical representation of the curve by its discretization in terms
of a ratio between the appropriate mesh size and radius of curvature at any location on
the curve. The rate is specified as a concrete number or as default value (controlled by the
command line option –w) using a special keyword def, optionally followed by a multiplication
factor preceded by an asterisk. The value of the rate has no upper bound limit and must
not be negative. Keyword nosplit can be used to indirectly specify average mesh density
along the curve below which the curve (or its part between subsequent vertices) is discretized
by a single segment and above which it is discretized by proporcionally reduced number of
segments. For example, using the value 0.25 means that the curve will be discretized by
a single segment whenever the octree mesh size control yields four (= 1.0 / 0.25) or less
segments, otherwise the number of segments dictated by the octree will be reduced by factor
0.25. The value of the non-splitting density must not be negative, the value larger than
one is irrelevant. Zero value prevents the splitting for any mesh density. This specification
is applied only to curves without the prescribed number of segments bounding physical
surface, patch, or shell entity subjected to unstructured discretization and not bounded by
any physical surface, patch, or shell entity subjected to mapped meshing. Note that the
discrepancy between the size of generated segment and density of the underlying octree data
structure may lead to poor quality elements or mesh generation failure. The meaning of
keywords property and virtual is the same as explained in Section 3.1. Keyword hidden
marks curve as a hidden one which allows the repositioning of mesh elements and nodes of
this curve during the smoothing process without respecting geometrical restriction of their

14

fixation to this curve. The polysize keyword is used for fixed curves only if the inheritance
of mesh size specification from the parent model entity is not desirable. In that case, the
size specification must be provided for each internal control point in subsequent order. The
repetition number preceded by an asterisk may be used if the specification is the same for
several subsequent control points. The meaning of keywords def and uni is the same as
described in Section 3.1. Keyword count can be used to enforce division of the curve to
a specified number of segments. The count specification is reflected only by physical curves
not bounding any physical solid surface, patch, or shell and not being fixed to other physical
model entity. When using support for quadrilateral and hexahedral meshing, keyword count
can be also used to prescribe tessellation of quad mappable surface, patch, or shell or of hexa-
mappable region along the curve. Note that in such a case, the final number of segments
may be modified due to possible inconsistency of specification on associated curves during
the tessellation propagation over quad and hexa-mappable model entities. If the tessellation
count is not specified and cannot be propagated from another curve, it is calculated from the
mesh size specification. Note that for curves with count specification, the the other mesh
size control mechanism (as size, density, etc.) are not applied unless the count specification
is (for any reason) ignored, in which case a warning is issued. The output of segments on
the curve may be enforced or suppressed by setting yes or no after output keyword. By
default, curves bounding a physical solid surface, patch, or shell designated for output are
not designated for output. The physical curve is not subjected to the discretization if the
curve itself and neither from the physical entities or interfaces of higher dimension being
bounded by the curve or to which the curve is fixed is designated for output. This enables to
suppress discretization of curves bounding a surface, patch, shell, or region not designated
for output without explicitly preventing their output. If the discretization of those curves
should not be suppressed, either their output must be enforced or the surface, patch, shell,
or region must be marked as virtual. Note however, that physical curve marked as slave or
master (see bellow) or being prototype of mirroring is subjected to the disretization even
if not designated for output. Optionally, there may be used keywords output elem no (or
output node yes) to suppress output of elements while not preventing the discretization of
the surface. This is useful if a physical curve not bounding any physical surface, patch,
or shell (thus undesirably designated for output by default) is assumed to be merged (thus
its discretization is necessary) with a slave curve bounding a physical surface, patch, or
shell. Note that specification output elem yes is equivalent to output yes and specification
output node no is equivalent to output no. Similarly as in Section 3.1, if generation of
elements on a model entity between the curve just being defined and other close curves
(already defined and bounding that entity) is to be prevented, the other curves should be
specified after keywords coincide curve. Neither from the coinciding curves is allowed
to be fixed to physical curve or curve with physical ancestor. Keyword bassoc followed by
specification yes or no controls separate output of triangles and quadrilaterals (ids) classified
on surfaces, patches, and shells bounded by the curve. Note that a specific command line
option (see option –A) controls whether all or none of the physical curves will be by default
designated for output of associated elements. Keyword swap enables or disables by setting
yes or no swapping of curve segments in a quadrilateral formed by two adjacent triangles
classified to two different planar model entities (surface, patch, or shell) sharing that curve
and subjected to triangular meshing. The curve must be two-manifold and the two incident
model entities must possess outer normal of the same orientation. The segment swapping

15

is not performed if the angle of the outer normals of those two model entities is greater
than the value specified by keyword angle following swap specification. Keyword smear
enables or disables by setting yes or no smearing of nodes (including vertices) of curve
shared by two different planar model entities (surface, patch, or shell) and subjected to
triangular meshing. The curve must be two-manifold and the two incident model entities
must possess outer normal of the same orientation. The node smearing is not performed if
the angle of the outer normals of those two model entities is greater than the value specified
by keyword angle following smear specification. Swap and smear specification is intended
to improve quality of solid discretization of regions described by polyhedrons with high
number of faces. Note that the angle value defaults to 45 degs. Keyword mirror followed
by a prototype curve id enables mirroring of prototype curve discretization by the curve
being defined (typically used when periodic boundary conditions are required). Note that
the mirroring is exact only if the two curves are geometrically identical (including location
of fixed vertices). In other cases, the mirroring yields generally only similar meshes or an
error if the segments of the prototype curve cannot be accommodated on the mirror curve.
Keyword weak following mirror curve specification weakens the mirroring in terms of not
using strictly the same parametric coordinates of nodes on prototype curve for nodes on
mirror curves. This is usefull either when the node distribution on the mirror copy curve
should reflect the local mesh density specification, if there are no vertices fixed to it, or
when the number of edges between the subsequent vertices fixed to it should be the same
on both curves. The latter case implies that there is the same number of fixed vertices
on both curves and that the vertices are ordered in the same way. The exact mirroring
can be enforced irrespectably whether the prototype and mirror curves are geometrically
identical by using keyword simple after mirroring specification, in which case strictly the
same parametric coordinates are applied. This can be advantageously employed when the
prototype and mirror curves are geometrically almost the same (for example due to round off
errors related to coordinates and weights defining the vertices of the curve control polygon).
Note however that enforcing simple mirroring for geometrically different curves may lead
to the deterioration of the mesh quality or even to meshing failure. Also note that the
keywords weak and simple are mutually exclusive. If the mirror curve is bounding or is fixed
to a surface, patch, or shell which is subjected to unstructured meshing or which is bounding
a region subjected to unstructured meshing, then the octree along the curves need to be
mirrored as well in order to ensure that the elements on both curves are in agreement with the
local octree spacing. The octree mirroring is performed automatically if the mirroring curves
are geometrically identical or if simple mirroring is enforced. Generally, the octree mirroring
can be enforced or suppressed by setting yes or no after keyword octree within mirroring
specification. Note however that enforcing octree mirroring for geometrically (and especially
parametrically) different curves may lead to undesirable (sometimes also pathological) octree
refinement. Undesirable octree refinement may be also observed when portions of the octree
along the curves mutually interfere. Keyword duplicate followed by a counterpart curve
id enables propagation of tessellation of the structured mesh and equidistant request (see
keyword equidistant below) from and to the counterpart curve. Thus there is no need to
specify count and/or equidistant request on both curves. The counterpart curves should
be identical (topologically and geometrically) otherwise the request is ignored (a warning is
issued) and the mesh conformity might be violated. A compatible mesh along duplicated
curves is generally produced only if the curves are spatially equivalent. Note that for poorly

16

parameterized curves the exact compatibility of the mesh is guaranteed only if the curves
are, except of topological, geometrical and spatial identity, also of the same orientation (with
respect to the spatial location). When a curve is to be discretized by segments of equal length,
keyword equidistant should be used. Note that the equidistant node distribution request
is accepted only by the top physical curves. If there is a vertex fixed to such a curve, the
equidistant request is ignored for this curve and it is propagated to all its parts including
fixed curves. When using support for quadrilateral and hexahedral meshing, the equidistant
request may be specified also for fixed curves. If there is a vertex fixed to such a fixed
curve, the equidistant request is ignored for this curve and if there exist a chain of subcurves
fixed to it and joining its end vertices, it is propagated to all these fixed subcurves. Note
that on curves bounding surfaces, patches, and shells subjected to unstructured meshing,
the equidistant request is checked to comply with the required mesh size distribution along
the curve. In the case of large discrepancies, the equidistant request is ignored. Note that
the equidistant node distribution along a curve is achieved only along curves with constant
(including infinite) curvature. For curves with variable curvature, the differences in lengths
of individual segments increases with the growing change in the curvature and decreases
with the number of segments. Keyword transition enables to control the mesh transition
between the structured and the unstructured mesh. The first parameter, ranging from 1 to 6,
corresponds to the maximal allowable aspect ratio of unstructured elements in the transition
from the fine structured to the coarse unstructured mesh. The second parameter, ranging
from 1 to 2, corresponds to the maximal allowable aspect ratio of unstructured elements
in the transition from the coarse structured to the fine unstructured mesh. The default
value of either of the transition parameters can be used by using keyword def. Note that
the default values of transition parameters can be overridden by command line option –J.
Keywords slave and master have the similar meaning as those described in Section 3.1,
with the only difference that all nodes on the curve are subjected to that process. Note
that for each edge on the slave or master curve there must be localized master or slave
counterpart on other entity. The meaning of keywords noslave and nomaster is the same
as described in Section 3.1. Also the meaning of keyword nodeprop is the same as explained
in Section 3.1. Similar meaning has keyword elemprop which specifies a single quoted string
that is assigned to the curve and relates to the elements on the curve. Keyword elemgroup
can be used to associate the elements (edges) generated on the curve with an integer type.
Note however, that similarly as the nodeprop and elemprop strings, also this number can be
accessed only via a special function call (when T3d is executed as a subroutine).

A curve may be degenerated into a single point (collapsed curve) if it is bounded by vertices
located at that point and if all control points are also located at that point. This is naturally
achieved if the same vertices are used to bound the curve. If different vertices are used these
vertices must have a common physical parent vertex. Collapsed curve is not allowed to
be fixed to a surface or non-collapsed curve. If a vertex is fixed to a collapsed curve with
different vertices the parameter t must be specified.

When generating structured quadrilateral meshes on two only partially adjacent model en-
tities (each of them is incident to a different part of the shared curve), keyword count can
be effectively used to control the tessellation only if it is specified for each part of the shared
curve (this implies that there must be a curve fixed to each part of the parent curve, even

17

that used only just by one of the model entities). Otherwise the structured meshing request
on one of the model entities will be ignored.

The primary purpose of keyword duplicate is to ensure generation of compatible structured
mesh over several separate parts of the domain which are not connected by a common model
entity. Note that the meshes along the interface corresponding to the missing common entity
will be generally compatible only if counterpart entities will be identical topologically and
geometrically, and if they will be at the same location or with equidistant request. However
if the mirroring is supported the same effect may be achieved by using keyword mirror.
Moreover, keyword mirror can be applied also to unstructured meshes and it yields compat-
ible meshes along the interface even if the counterpart entities are not at the same location
(but they must be still topologically and geometrically identical). Note, that a natural com-
patibility is obtained in the case of unstructured meshes even without the keyword mirror
if the counterpart entities along the interface are topologically, geometrically, and spatially
identical.

A set of internal control points must be provided for each non-fixed curve of degree n > 1
unless the automatically computed location of all or some of the control points should be
employed. It means that input record of such a curve may be followed by up to n−1 records
for individual internal control points of the curve. The number of the control point in the
range from 1 to n− 1 specified after keyword Polygon is used as the control point sequence
number with respect to the curve orientation and can be referenced only in the context of
the current curve. The control point may be specified by three coordinates preceded by
keyword xyz or may be associated with any already specified polygon control point using
keyword poly followed by the sequence number of that control point. Keywords size and
weight have a similar meaning to the one explained in Section 3.1 but even zero or negative
values of size and weight specification can be used. Note however that the denominator in
Eqs (1), (2), (5), and (6) must not be negative or zero. If size specification is omitted and
the default zero value is not overidden by any other default specification (for example using
the command line options for default or uniform mesh size (see command line options –d
and –u), a warning is issued. If zero or negative specification is used explicitly, no warning is
generated. If not all internal control points are specified, the record starting with keyword
Polyend must be used as last.

In the current implementation, keyword hidden is ignored, unless only two planar model
entities (physical, solid, non-hidden surface, patches, and shells) with the same property and
with collinear normals of the same orientation are sharing the given curve with no physical
parent or child. Note that using hidden curves has an impact on the performance because the
surfaces, patches, and shells sharing those curves are subjected to an additional smoothing.

18

3.3 Input Records of a SURFACE

Surface in# { curve in# in# in# in# } \
[order in# in# || fixed surface in#] \
[size { fp# | def | uni | sur } [* fp#]] \
[factor fp#] \
[rate { fp# | def } [* fp#]] \
[property in#] \
[virtual] \
[hidden] \
[hole] \
[output [elem | node] { yes | no }] \
[polysize ([* in#] { fp# | def | uni })] \
[(coincide { surface | patch | shell } (in#))] \
[bassoc { yes | no }] \
[quad] \
[map { yes | no }] \
[lcs in# in#] \
[diagonal { none | positive | negative | point fp# fp# fp# }] \
[equidistant] \
[mirror in# [weak | simple] [octree { yes | no }] [smooth { yes | no }]] \
[duplicate in#] \
[(attract fp# { all | vertex (in#) | curve (in#) })] \
[slave | master] \
[noslave] \
[nomaster] \
[nodeprop @] \
[elemprop @] \
[elemgroup in# in#]

Polygon in# in# { xyz fp# fp# fp# | poly in# in# } \
[size { fp# | def | uni | sur } [* fp#]] \
[weight fp#]

Polyend

Surface, as the compulsory keyword, is followed by its identification number. Identification
numbers of the four bounding curves are specified after keyword curve in clockwise order
when viewing the surface against its (outer) normal (see below for its definition). The first
and second curves determine the u and v directions, respectively, on the surface with the
origin at their common vertex. The orientation of surface (outer) normal is then given by the
vector product of vectors tangent to the parametric curves in u and v directions and oriented
in the positive u and v directions, respectively. The orientation of bounding curves is not
relevant. No two adjacent curves are allowed to be degenerated into a single point and no two
opposite or adjacent curves are allowed to be the same or coinciding. This disables creation
of surfaces degenerated into a curve or point. The surface orders in u and v directions may

19

be specified after keyword order. The surface may be fixed to a surface which is expressed
by keywords fixed surface and the identification number of the parent surface. If surface
orders are not provided and the surface is not fixed to any surface the orders are extracted
from the curves bounding the surface. When the surface is fixed to the surface, the orders
may but need not be specified. In the former case, order in any direction must be greater or
equal to the order of the parent surface or set to zero (the order of the parent surface is used
in that case). When the surface is fixed to the surface its bounding curves must be fixed
to the parent surface itself. They are not allowed to be fixed to or be curves bounding the
parent surface unless all four curves bounding the parent surface are used to bound the fixed
surface, in which case the fixed surface is handled as a copy of the parent surface (sharing
with it all boundary curves and vertices). This may be used to expand the parent surface
without the need to specify its control polygon points. The ordering of bounding curves of
the fixed surface must be in agreement with bounding curves ordering of the parent surface.
Since physical curves fixed to a physical solid surface are not allowed to intersect each other,
the physical surfaces fixed to the same physical solid surface cannot overlap. The meaning
of keywords size, factor, rate, property, virtual, hidden and polysize is the same as
explained in Section 3.2. It should be mentioned however that the smallest of both principal
radii of curvature on the surface is considered when the rate is specified. Only surface shared
by two solid physical regions of the same property may be hidden. Also note that for surfaces
and curves with nonzero size the (nonzero) value of factor is recursively propagated to the
boundary entities of the next lower dimension until a smaller (nonzero) factor is encoun-
tered. Keyword hole is used to specify that the currently defined surface forms a hole. The
output of triangles and quadrilaterals on a surface may be enforced or suppressed by setting
yes or no after output keyword. By default, surfaces bounding a physical solid region are
not designated for output. The physical surface is not subjected to the discretization if the
surface itself and neither from the physical entities or interfaces of higher dimension being
bounded by the surface or to which the surface is fixed is designated for output. This enables
to suppress discretization of surfaces bounding a region not designated for output without
explicitly preventing their output. If the discretization of those surface should not be sup-
pressed, either their output must be enforced or the region must be marked as virtual. Note
however, that physical surface marked as slave or master (see bellow) or being prototype
of mirroring is subjected to the disretization even if not designated for output. Optionally,
there may be used keywords output elem no (or output node yes) to suppress output of
elements while not preventing the discretization of the surface. This is useful if a physical
surface not bounding any physical region (thus undesirably designated for output by default)
is assumed to be merged (thus its discretization is necessary) with a slave surface bounding
a physical region. Note that specification output elem yes is equivalent to output yes, and
specification output node no is equivalent to output no. The meaning of keyword polysize
is the same as explained in Section 3.2. Keep in mind, however, that the control points
on a surface are ordered in such a way that the first index (corresponding to u direction)
is running faster. Similarly as in Section 3.1, if generation of elements on a model entity
between the surface just being defined and other close surfaces, patches, or shells (already
defined and bounding that entity) is to be prevented, the other surfaces, patches, or shells
should be specified after appropriate model entity keyword (surface, patch, or shell) preceded
by keyword coincide. Keyword bassoc followed by setting yes or no controls separate out-
put of tetrahedra, pyramids, wedges, and hexahedra (ids) classified to region bounded by

20

the surface. Note that a specific command line option (see option –A) controls whether
all or none of the physical surfaces will be by default designated for output of associated
elements. Generation of unstructured quad-dominant mesh may be specified by keyword
quad. Generation of structured quad mesh can be enforced or suppressed by keyword map
followed by setting yes or no. Note that if directive T3D QUAD HEXA MESHING is not
defined, keyword quad is equivalent to keywords map yes. The structured mesh can be built
only on quad-mappable surface with four non-collapsed boundary curves without any fixed
physical curve but with few fixed vertices (larger amount or inappropriate location of fixed
vertices may cause generation of unstructured mixed mesh or failure). If the surface is not
quad-mappable, either unstructured trinagular mesh or unstructures quad-dominant mesh,
if keyword quad was used, is produced. Note that fixation of vertices and curves to surface
with structured mesh request can be alternatively accomplished via the master keyword
when defining the vertex or curve. The tessellation of structured mesh may be controlled
by count specification on boundary curves. The tessellation count is automatically propa-
gated over opposite curves (in a recursive manner) and needs not be therefore specified for
each curve. Note that the quad mapping request is generated automatically if the surface is
bounding a hexa-mappable region with hexa mapping request (see Section 3.6). The local
coordinate system controlling the ordering of mapped quads can be defined by keyword lcs
followed by identification numbers of two neigbouring curves bounding the surface. The rows
of structured quads are generated along the first curve in the direction from the vertex shared
with the second curve. The node ordering of each quad is counterclockwise with respect to
the surface normal and starts at the node topologically closest to the surface vertex shared
by those two curves. If there are vertices fixed to the surface or convexity check (specified
via command line option –K) is prescribed, the above node ordering is guaranteed for each
quad only if the resulting mesh is strictly structured. Keyword diagonal can be used to
generate structured triangular mesh by diagonal splitting each of the structured quad into
two triangles. The two possible diagonal choices can be specified by keyword positive and
negative, respectively, following the keyword diagonal. The positive diagonal is formed by
the first and the third quad nodes, the negative diagonal is the other one. Note that these
two choices are unambiguous only if the local coordinate system is specified (otherwise the
quad ordering and consequently also the orientation of the positive and negative diagonal
is mesh dependent). Alternatively, the choice of the diagonal can be controlled by keyword
point preceded by keyword diagonal and followed by three coordinates of a point. Then the
quad diagonal is employed that is formed by the node, which distance from that point is
the smallest. Note that this specification may be ambiguous if the point is located on the
symmetry plane of any of the quad edges. The diagonal splitting is prevented if keyword
none is used after keyword diagonal. Note that diagonal splitting request is ignored if the
accommodation of fixed vertices results in lost of structured character of the mesh. Key-
word equidistant can be used to make the structured mesh regular (without taking into
account the required mesh size distribution) by propagating the equidistant request to all
boundary curves. Keyword mirror followed by a prototype surface id enables mirroring of
prototype surface discretization by the surface being defined. The prototype surface must
be topologically identical and geometrically similar with the surface being defined otherwise
the mirror request is ignored. Note that the mirroring is exact only if the mirrored surfaces
are geometrically identical (including location of fixed curves and vertices in the interior and
even on the boundary). If they are not geometrically identical, the mirroring is based on

21

a mapping between the parameterization of both surfaces derived from the least squares fit
of all constraining nodes. In this case however, an invalid mesh (with inverted elements)
may be produced if the constraints do not allow to properly accommodate elements from
the prototype surface. The mirroring using the parameterization mapping may be enforced
even for geometrically identical surfaces if keyword weak is applied after the mirroring spec-
ification. On the other hand, simple mirroring may be enforced using keyword simple after
mirroring specification in which case the parameterization mapping is omitted and strictly
the same parametric coordinates of nodes on the prototype surface for nodes on mirror sur-
face. Note however that enforcing simple mirroring for geometrically different surfaces may
lead to the deterioration of the mesh quality or even to meshing failure. If the mirror surface
is bounding or fixed to a region which is subjected to unstructured meshing then the octree
along the surfaces need to be mirrored as well in order to ensure that the elements on both
surfaces are in agreement with the local octree spacing. The octree mirroring is performed
automatically if the mirroring surfaces are geometrically identical or if simple mirroring is
enforced. Generally, the octree mirroring can be enforced or suppressed by setting yes or
no after keyword octree within mirroring specification. Note however that enforcing octree
mirroring for geometrically (and especially parametrically) different surfaces may lead to
undesirable (sometimes also pathological) octree refinement. Undesirable octree refinement
may be also observed when portions of the octree along the surfaces mutually interfere. The
weakly mirrored surface mesh is generally subjected to an additional smoothing. This may
lead to not negligibly different meshes of almost identical prototype and mirrored surfaces.
To alleviate this effect, the additional smoothing of mirrored surface mesh can be suppressed
by using smooth no within mirror specification. Alternatively it is possible to prescribe ad-
ditional smoothing to mesh of the prototype surface by using smooth yes within a fictitious
mirroring specification (using zero id for the prototype surface) when defining the prototype
surface. The latter approach is preferred as it leads generally to slightly better mesh qual-
ity. Note, however, that it is not possible to use keywords simple, weak and octree in the
fictitious mirroring specification. The mirror and weak requests are propagated to all curves
bounding the prototype surface or being fixed to it. Note however that this is not the case
for simple and octree requests. Keyword duplicate followed by a counterpart surface id
enables propagation of tessellation of the structured mesh and equidistant request from and
to the counterpart surface. Thus there is no need to specify quad mapping and/or equidis-
tant request on both surfaces (or even on neither from them if the request is propagated at
least to one of them from hexa-mappable region bounded by the surface). The counterpart
surfaces must be topologically identical to enable propagation of the keyword duplicate to
boundary curves. If they are also geometrically identical mesh conformity is ensured. Du-
plication request on quad non-mappable surfaces is ignored. Keyword attract is used to
define an attraction (≥ 0) or a repulsion (≤ 0) coefficient for particular boundary nodes dur-
ing mesh smoothing process (on unstructured mesh only) of the surface. These may be all
boundary nodes (including internal boundary, even that defined later) if keyword attract is
followed by keyword all, or nodes at particular vertices or on particular curves, defined after
keyword vertex or keyword curve, respectively, preceded by keyword attract. Note that the
coefficient must be in range from −1 (exclusive) to 10 (inclusive). Zero attraction coefficient
prevents any attraction (or repulsion). Attraction coefficients close to range limits may cause
smoothing failure. Note that attraction may be specified repeatedly within the same surface
definition. If a particular entity (vertex or curves) appears in more than just a single spec-

22

ification (all specification exclusive), only the first one is considered (without any warning
being issued). This enables to prescribe attraction (using however the same coefficient) to
nodes on all internal boundaries defined after the surface itself different from the attraction
of nodes on external boundary. Note that the ordering of all specification within remaining
attract specifications is irrelevant. No warning is issued if a vertex or curve not bounding the
surface is used to define attraction on the surface. The attraction specification is ignored if
the surfaces is bounding a physical region. Keywords slave, master, noslave, nomaster
have the same meaning as described in Section 3.2. When using keyword slave, surface (i.e.
entity of the same type) on which the master node should be searched for can be specified
using the keyword coincide. This may be useful if there are several identical surfaces sharing
the same location (for example when modelling interface that is connected to the rest of
the body using master-slave concept in which case there are altogether four such surfaces)
and keyword nomaster cannot be effectivelly applied. Note that the output of elements on
the conciding surface is suppressed unless explicitly requested by keyword output. Keywords
slave and master can be used to simulate nonmanifols models in which the defined surface (if
marked as slave) or other surface, patch, or shell (if the defined surface is marked as slave)
is shared by more than one region on any side. Note however that in such a case the output
of boundary associated elements on such entity is suppressed. Keywords nodeprop, and
elemprop have the same meaning as explained in Section 3.2. Also keyword elemgroup
has the same meaning as described in Section 3.2 with the only difference that two integer
numbers associated to triangular and quadrilateral elements (in this order) must be supplied.

A set of internal control points must be provided for each non-fixed surface of degrees greater
than 1 in both directions unless the automatically computed location of all or some of the
control points should be employed. It means that input record of such a surface of degree
n×m may be followed by up to (n− 1)(m− 1) records for individual internal control points
of the surface. The numbers of the control point (in u direction ranging from 1 to n − 1
and in v direction ranging from 1 to m − 1) specified after keyword Polygon are used as
the control point sequence numbers and can be referenced only in the context of the current
surface. The control point may be specified by three coordinates preceded by keyword xyz
or may be associated with any already specified polygon control point using keyword poly
followed by the sequence numbers of that control point. Keywords size and weight have
the same meaning as explained in Section 3.2. If not all internal control points are specified,
the record starting with keyword Polyend must be used as last.

Planar surface must be convex. Note that using hidden surfaces has an impact on the perfor-
mance because the regions sharing those surfaces are subjected to an additional smoothing.

23

3.4 Input Record of a PATCH

Patch in# { normal fp# fp# fp# | ref fp# fp# fp# } \
{ (boundary curve (in#)) } \
[(subpatch (in#))] \
[(fixed { vertex | curve } (in#))] \
[size { fp# | def | uni } [* fp#]] \
[factor fp#] \
[property in#] \
[virtual] \
[hidden] \
[hole] \
[output [elem | node] { yes | no }] \
[(coincide { surface | patch | shell } (in#))] \
[bassoc { yes | no }] \
[quad] \
[map { yes | no }] \
[lcs in# in#] \
[diagonal { none | positive | negative | point fp# fp# fp# }] \
[equidistant] \
[mirror in# [weak | simple] [octree { yes | no }] [smooth { yes | no }]] \
[duplicate in#] \
[(attract fp# { all | vertex (in#) | curve (in#) })] \
[slave | master] \
[noslave] \
[nomaster] \
[iso [tria | quad] { yes | no } [dir fp# fp# fp#]] \
[origin fp# fp# fp#] \
[epsilon fp#] \
[nodeprop @] \
[elemprop @] \
[elemgroup in# in#]

Patch, as the compulsory keyword, is followed by its identification number. The (outer)
normal vector of the patch may be specified after keyword normal. If this is not the case,
the normal is computed automatically in the least-squares sense with respect to the patch
geometry and its orientation is adjusted with respect to the reference point specified after
keyword ref which is assumed to be out of the patch plane and on the side pointed to
by the patch (outer) normal. The list of signed identification numbers of curves bounding
the patch (from outside or inside) is preceded by keywords boundary curve. The positive
number indicates the anticlockwise orientation of the curve (given by its starting and ending
vertex) with respect to the patch when viewing it against the outer normal. The negative
number indicates the clockwise orientation of the curve. The sign of identification number
of collapsed curve forming the boundary of the patch is irrelevant (as the curve itself). The
list of identification numbers of patches surrounded by the currently defined patch may be

24

specified after keyword subpatch. Each subpatch must be coplanar with the patch, however
its normal orientation is arbitrary. If a subpatch is touching the patch along its boundary
curve, this curve must be specified also in the list of curves bounding the patch (including
proper orientation). Furthermore, identification numbers of vertices and curves inside the
patch can be enumerated after appropriate model entity keyword (vertex or curve) preceded
by keyword fixed. The meaning of keywords size, factor, property, virtual, hidden,
hole, output, coincide, bassoc, quad, map, lcs, diagonal, equidistant, mirror, weak,
simple, octree, duplicate, slave, master, noslave, nomaster, nodeprop, elemprop,
and elemgroup is the same as described in Section 3.3. Also keyword attract has similar
meaning as described in Section 3.3, but since all external as well as internal boundary
entities (vertices and curves) of patch has to be defined before the patch itself, different
attraction specification can be used for each of these entities.The factor specification is
effective only if size specification is provided. Only patch shared by two solid physical
regions of the same property is allowed to be hidden. Keyword iso enables generation of
ideal equilateral elements of the same size (defined by keyword size) inside of the patch
surrounded by unstructured mesh along the patch boundary. The type of iso elements may
be specified by keyword tria or quad following the iso keyword, otherwise the iso elements
are of the same type as requested for elements in the surrounding unstructured mesh. The
orientation of the iso elements may be prescribed by a vector (in the patch plane) after
keyword dir following the iso specification. If the orientation is not given, an appropriate
one is automatically calculated. The iso elements are formed only if the size specification
is not too large with respect to patch dimensions, otherwise a warning is issued. Keep in
mind that in order to guarantee good quality of unstructured elements, the iso elements are
not placed closer to patch boundary than approximately the double of their size. Note that
the keyword diagonal can be also used to split iso quads into right angle iso-sceles triangles.
The full control over the choice of diagonal is available only if the orientation of iso quads
is specified. The patch iso meshing request is ignored if the patch is to be mirrored or if
structured quad mesh is requested and the patch is quad-mappable. Generally, the patch
is assumed to be ideally planar. In the case that the patch deviates slightly from a plane,
the position of its pseudo-plane is automatically located making the maximum deviations on
both sides equal, unless the position is explicitly given by keyword origin followed by three
coordinates. In any case, if the deviation of any of vertices bounding the patch or fixed to
the patch from the pseudo-plane exceeds the user defined tolerance (see command line option
–e) the patch is considered as nonplanar and can be treated only if the source code has been
compiled with the directive T3D NONPLANAR PATCH. To avoid accidental deviation from
the plane (typically due to the manual input data preparation), the maximum deviation is
not allowed to exceed value specified after keyword epsilon. If this value is set to zero
the user defined epsilon is used. The nonplanar patch can be successfully handled only if
boundary curves and fixed vertices and curves projected perpendicularly to its pseudo-plane
form a topologically valid patch. Note that in the case of nonplanar patch, its subpatches
need not be coplanar with it but their plane or pseudo-plane is not allowed to differ from the
pseudo-plane by more than 45 degs. The actual shape of the nonplanar patch is interpolating
smoothly the individual boundary curves and nonsmoothly fixed vertices and curves but the
user has no explicit control over the shape. This makes the nonplanar patch inappropriate
for the modelling of surfaces with exact geometries. If higher order elements are used, mid-
nodes classified to nonplanar patch are not projected to the patch and their position is given

25

by simple average of corresponding element corner nodes. Note that nonplanar patch cannot
be processed if smoothing is disabled (see command line option –S). Note also that support
of iso elements on nonplanar patch is not available.

Note that using hidden patches has an impact on the performance because the regions sharing
those patches are subjected to an additional smoothing.

26

3.5 Input Record of a SHELL

Shell in# { bgsurface in# } \
{ (boundary curve (in#)) } \
[(subshell (in#))] \
[(fixed { vertex | curve } (in#))] \
[size { fp# | def | uni } [* fp#]] \
[factor fp#] \
[rate { fp# | def } [* fp#]] \
[property in#] \
[virtual] \
[hidden] \
[hole] \
[output [elem | node] { yes | no }] \
[(coincide { surface | patch | shell } (in#))] \
[bassoc { yes | no }] \
[quad] \
[map { yes | no }] \
[lcs in# in#] \
[diagonal { none | positive | negative | point fp# fp# fp# }] \
[equidistant] \
[mirror in# [weak | simple] [octree { yes | no }] [smooth { yes | no }]] \
[duplicate in#] \
[(attract fp# { all | vertex (in#) | curve (in#) })] \
[slave | master] \
[noslave] \
[nomaster] \
[nodeprop @] \
[elemprop @] \
[elemgroup in# in#]

Shell, as the compulsory keyword, is followed by its identification number. The background
surface of the shell is specified after keyword bgsurface. Note that the background surface
is also part of the model and will be discretized unless marked as hole or virtual. The list of
signed identification numbers of curves bounding the shell (from outside or inside) is preceded
by keywords boundary curve. The positive number indicates the anticlockwise orientation
of the curve (given by its starting and ending vertex) with respect to the shell when viewing
it against the outer normal. The negative number indicates the clockwise orientation of the
curve. The sign of identification number of collapsed curve forming the boundary of the shell
is irrelevant (as the curve itself). Orientation of the outer normal vector of the shell is given
by the background surface. The list of identification numbers of shells surrounded by the
currently defined shell may be specified after keyword subshell. Furthermore, identification
numbers of vertices and curves inside the shell can be enumerated after appropriate model
entity keyword (vertex or curve) preceded by keyword fixed. The meaning of keywords
size, factor, property, virtual, rate, hidden, hole, output, coincide, bassoc, quad,

27

map, lcs, diagonal, equidistant, mirror, weak, simple, octree, duplicate, attract,
slave, master, noslave, nomaster, nodeprop, elemprop, and elemgroup is the same
as described in Section 3.3. The factor specification preceded by keyword is effective only
if size specification is provided. Only shell shared by two solid physical regions of the same
property is allowed to be hidden. Note that in the case of mirroring, the topological identity
and geometrical similarity relates also to background surfaces.

Note that using hidden shells has an impact on the performance because the regions sharing
those shells are subjected to an additional smoothing.

28

3.6 Input Record of a REGION

Region in# { (boundary { surface | patch | shell } (in#)) } \
[(subregion (in#))] \
[(fixed { vertex | curve | surface | patch | shell } (in#))] \
[size { fp# | def | uni } [* fp#]] \
[factor fp#] \
[property in#] \
[virtual] \
[hole] \
[output { yes | no }] \
[hexa] \
[map { yes | no }] \
[equidistant] \
[extrude [{ surface | patch | shell } in#] \

[weak | simple] [octree { yes | no }]] \
[lcs in# in# in#] \
[iso { yes | no } [sz { fp# | def | uni } [* fp#]] \

[dir1 fp# fp# fp# dir2 fp# fp# fp#]] \
[nodeprop @] \
[elemprop @] \
[elemgroup in# in# in# in#]

Region, as the compulsory keyword, is followed by its identification number. The list of
signed identification numbers of surfaces, patches, and shells bounding the region is speci-
fied after appropriate model entity keyword (surface, patch, or shell) preceded by keyword
boundary. The positive number means that the outer normal of the surface, patch, or shell
points out of the region, the negative number indicates that the outer normal points inside
the region. The list of identification numbers of regions surrounded by the region may be
specified after keyword subregion. If a subregion is touching the region along its bound-
ary surface, patch, or shell, this boundary entity must be specified also in the appropriate
list of entities bounding the region (including proper orientation). Furthermore, the iden-
tification numbers of vertices, curves, surfaces, patches, and shells inside the region can be
enumerated after appropriate model entity keyword (vertex, curve, surface, patch, or shell)
preceded by keyword fixed. The meaning of keywords size, factor, property, and virtual
is the same as in Section 3.4. Keyword hole indicates that the currently defined region
is a hole. The output of tetrahedra, pyramids, wedges, and hexahedra in region may be
enforced or suppressed by setting yes or no after output keyword. By default, each physical
solid region is designated for output. Note that the physical region is not subjected to the
discretization if it is not designated for output. Generation of hexa-dominant unstructured
region mesh may be specified by keyword hexa. Generation of structured hexa mesh can be
enforced or suppressed by keyword map followed by setting yes or no. Note that if direc-
tive T3D QUAD HEXA MESHING is not defined, keyword hexa is equivalent to keywords
map yes. The structured mesh can be built only on hexa-mappable regions topologically
similar with a hexahedron without any fixed physical entity, with six quad-mappable bound-

29

ary model entities (surface, patch, or shell), each one without any fixed curve or vertex.
The quad mapping request is automatically generated on all boundary entities of the hexa-
mappable region with the hexa mapping request. Note that the tessellation of structured
mesh may be controlled by count specification on boundary curves. The tessellation count
is automatically propagated over opposite curves (in a recursive manner) of boundary model
entities and needs not be therefore specified for each curve. A semi-structured region mesh
composed of prismatic elements (wedges and hexas) can be prescribed by keyword extrude.
An extrudable region must be bounded by two opposite topologically identical base entities
(surfaces, patches, or shells) and by a set of quad mappable lateral surfaces, patches, and
shells. There may be a physical curve, and/or quad mappable physical surface, patch, or
shell fixed to the region spanning the whole region in the direction of the extrusion. How-
ever, there may be no physical vertex fixed inside the region. Note that fixation of vertices
and curves to region with structured or semi-structured mesh request can be accomplished
via the master keyword when defining the vertex or curve. The keyword extrude can be
optionally followed by the specification of the base entity using one of keywords surface,
patch, or shell with the entity identification number. If the base entity is not specified, it is
detected automatically unless the region is found to be not extrudable. Note that the choice
of the base entity determines the direction of the extrusion and may have also a significant
impact on the quality of the mirroring between the base entities. The extrusion of struc-
tured meshes is not supported. In such a case, the request for the semi-structured mesh is
automatically replaced by the request for the structured mesh. The keywords weak, sim-
ple, and octree after extrusion specification is used for the mirroring of the base entities
and has therefore the same meaning as explained in Section 3.3. Note however that this
mirroring request is only implicit and may be reversed or even replaced by other indirected
multiple mirroring requests. Thus if the mirroring direction between the base entities is of
primary importance it is recommended to explicitly prescribe the mirroring between that
pair of entities. Note that simple and octree request in an extrusion specification without
the base entity specification may be dangerous if the extrusion direction is ambiguous.

The meaning of keywords equidistant, nodeprop, and elemprop is the same as de-
scribed in Section 3.3. Also keyword elemgroup has the similar meaning as described in
Section 3.3 with the only difference that four integer numbers associated to tetrahedral, pyra-
mid, wedge, and hexahedral elements (in this order) must be supplied. The local coordinate
system controlling the ordering of mapped hexahedra can be defined by keyword lcs followed
by identification numbers of three curves bounding the region, sharing a common vertex and
forming a right hand sided coordinate system. The structured hexahedra are generated in
layers along the third curve in the direction from the common vertex. Within each layer,
the rows of structured hexahedra are generated along the first curve in the direction from
the common vertex. The node ordering of each hexahedron starts at the node topologically
closest to the common vertex and follows the counterclockwise ordering within bottom and
top base of the hexahedron. The meaning of keyword iso is similar as in Section 3.4. The
orientation of the iso elements may be prescribed by two orthogonal vectors after keyword
dir1 and dir2 within keyword iso specification. If the orientation is not specified, an appro-
priate one is automatically calculated if the region is bounded by planar model entities only.
Otherwise Cartesian coordinate system is used. The size of iso elements can be prescribed
after keyword sz (using either a concrete number or a special keyword (def or uni), optionally
followed by a multiplication factor preceded by an asterisk) within the iso keyword block. If

30

this specification is not provided, the size of iso elements is taken as the default mesh size
specified (after keyword size) for the region. Note that the request for the generation of iso
elements is ignored if neither specification is available, if the available specification is zero or
if zero region or mesh size multiplication factor (see command line option –v) is applied. The
iso elements are formed only if the size specification is not too large with respect to region
dimensions, otherwise a warning is issued. The decrease of the size of the iso elements needs
not necessarily fix the problem as the size of transition zone (to accommodate variable size
elements) may increase in such a case. Note that during the discretization of the transition
zone around the iso elements, the default region mesh size is ignored. The region iso mesh-
ing request is ignored if structured hexa mesh is requested and the region is hexa-mappable
satisfying all other requirements for structured mesh generation.

In the current implementation, generation of unstructured hexahedral meshes is not sup-
ported. The pyramid elements are used only in the the region subjected to unstructured
tetrahedral meshing with boundary or fixed surface, patch, or shell containing quadrilateral
elements or in the region subjected to iso meshing. Wedge elements are used in extruded
region only. Generation of iso elements is supported only for hexahedrons. Region with ex-
trusion request is considered as not extrudable if there is a curve bounding surface, patch, or
shell fixed to that region not directly fixed to its base entity. Note that the list of boundary
surfaces of the region and the list of vertices, curves, and surfaces fixed to the region may
also comprise boundary mesh vertices, curves, and surfaces.

31

3.7 Input Record of an INTERFACE

Interface in# { type { vertex | curve | surface | patch | shell } in# in# } \
[property in#] \
[virtual] \
[mirror [weak | simple] [octree { yes | no }]] \
[elemfree] \
[output { yes | no }] \
[nodeprop @] \
[elemprop @] \
[elemgroup in# [in#]]

Interface, as the compulsory keyword, is followed by its identification number. The type
of the interface is specified by appropriate model entity keyword (vertex, curve, surface,
patch, or shell) preceded by keyword type and followed by identification numbers of pairs of
entities forming the interface. Note that the first/second entity from the pair is considered
as interface master/slave entity (mind the difference between keywords master and slave in
preceeding sections). The master and slave interface entities must be topologically sufficiently
detached. This means that at least a single pair of corresponding (master and slave) nodes
(end nodes on edges or corner nodes on triangles and quads) must be distinct nodes. Note
that this limitation is relevant only if linear elements are generated. The keywords weak,
simple, and octree following keyword mirror are used for the mirroring of the interface
entities and have therefore the same meaning as explained in Section 3.2 if the interface
is of type curve or in Section 3.3 if the interface is of type surface, patch, or shell. The
keyword elemfree prevents the creation of interface elements and only the nodal connectivity
corresponding to interface elements is stored. This is useful when renumbering is applied
and the connectivity between the model entities forming the interface should be considered
(eg. in the case of periodic boundary conditions). Note however that the renumbering
obtained for model with an element free interface is generally different from that obtained
for the same model with standard interface. This is consequence of the sensitivity of nodal
renumbering algorithm on connectivity ordering. Note that the sides of the interface can
be formed by entities marked as slave or master. Interface of type surface, patch, or shell
is not allowed, however, to have entities marked as slave on both sides simultaneously. The
meaning of keywords property, virtual, output, nodeprop, and elemprop is the same
as in Section 3.6. Keyword elemgroup can be used to associate the interface elements
with an integer type. In the case of the interface between pairs of vertices or curves, only
one integer element type corresponding to edge and quadrilateral element, respectively, is
expected. In the case of the interface between the pairs of surfaces, patches, and shells,
two integer types associated to wedge and hexahedral elements (in this order) are expected.
Note that elemgroup numbers can be accessed only via a special function call (when T3d is
executed as a subroutine).

The discretization of interface entity is formed by a single layer of elements between the
topologically similar meshes on pairs of model entities forming the interface. This is simply
achieved if one of those model entities is mirror of the other. If this mirroring is not explicitly

32

prescribed by the user, it is automatically defined with the master entity being the proto-
type and the slave being the mirror. This implies that the pair of model entities forming
the interface must comply with all the criteria relevant for mirroring of model entities of
particular type. In the case of interface between vertices, there are no criteria at all. Note
that the first/second half of nodes of an interface element (see node numbering in Section 7)
are always located on the master/slave side of the interface.

33

3.8 Input Records Related to Boundary Mesh

In this section, input records for description of model entities based on boundary mesh con-
sisting of triangular and eventually (if support for quad-hexa meshing is enabled) quadrilat-
eral elements are described. Note that these entities are not allowed to interact (be bounded,
form boundary of, be fixed to, be parent of) with ordinary model entities except region and
interface.

3.8.1 Input Record of Boundary Mesh File

Bnd mesh { file name }

Bnd mesh, as the compulsory keyword, is followed by the name of file with boundary mesh
description. The file name can be given by absolute path, in which case it starts by a slash
(on Unix/Linux platforms) or by a drive letter followed by colon (on MS Window/DOS
platforms), or by relative path, in which case the file name is appended after the last slash
(on Unix/Linux platforms) or backslash (on MS Window/DOS platforms) in the input file
name, if there is any, or it is used alone, if there is no one. Note that boundary mesh file
record must precede all other records related to boundary mesh. The format of the boundary
mesh file is described in Section 4.

3.8.2 Input Record of Boundary Mesh VERTEX

Bnd vertex in# { bnd node in# } \
[property in#] \
[output { yes | no }] \
[coincide vertex (in#)] \
[nodeprop @]

Bnd vertex, as the compulsory keyword, is followed by its identification number. Note that
conflict with numbering of ordinary vertices must be avoided. The boundary mesh vertex is
defined by a boundary mesh node, identification number of which is specified after keyword
bnd node. The meaning of all remaining keywords is the same as explained in Section 3.1.

3.8.3 Input Record of Boundary Mesh CURVE

Bnd curve in# { bnd edges in# bnd edge ((in#) | (in#– in#)) } \
[property in#] \
[output { yes | no }] \
[bassoc { yes | no }] \
[coincide curve (in#)] \
[nodeprop @] \
[elemprop @] \
[elemgroup in#]

Bnd curve, as the compulsory keyword, is followed by its identification number. Note that
conflict with numbering of ordinary curves must be avoided. The boundary mesh curve

34

is defined by the number of boundary mesh edges following keyword bnd edges and by
the enumeration of individual boundary mesh edges forming the curve preceded by key-
word bnd edge. The enumeration has the form of combination of individual identification
numbers and their continuous ranges given by pair in#- in#, where the first numbers cor-
responds to the starting boundary mesh edge id and the second number corresponds to the
ending boundary mesh edge id. Note that the order in which the boundary mesh edges
are enumerated is independent of the actual ordering of the edges on the boundary mesh
curve. Also note that the orientation of individual boundary mesh edges is irrelevant. Keep
in mind, however, that the boundary mesh edges must form a single continuous manifold
curve. The meaning of all remaining keywords is the same as explained in Section 3.2. Note
that boundary mesh curve needs not be bounded by any boundary mesh vertex no matter
whether it is closed or open. On the other hand, boundary mesh node shared by boundare
mesh edges forming different boundary mesh curves must form a boundary mesh vertex. If
an open boundary mesh curve is not bounded by vertices, a warning about violated B-rep
consistency is issued.

3.8.4 Input Record of Boundary Mesh SURFACE

Bnd surface in# { bnd faces in# bnd face ((in#) | (in#– in#)) | \
bnd quads in# bnd quad ((in#) | (in#– in#)) } \

[normal face in# || normal quad in#] \
[property in#] \
[output { yes | no }] \
[bassoc { yes | no }] \
[coincide { surface (in#) | patch (in#) | shell (in#) }] \
[nodeprop @] \
[elemprop @] \
[elemgroup in# in#]

Bnd surface, as the compulsory keyword, is followed by its identification number. Note
that conflict with numbering of ordinary surfaces must be avoided. The boundary mesh sur-
face is defined by the set of boundary mesh triangles and/or boundary mesh quadrilaterals
forming the surface. The set of triangles is given by the number of boundary mesh triangles
following keyword bnd faces and by the enumeration of individual boundary mesh triangles
preceded by keyword bnd face. Similarly, the set of quadrilaterals is given by the number
of boundary mesh quadrilaterals following keyword bnd quads and by the enumeration of
individual boundary mesh quadrilaterals preceded by keyword bnd quad. The enumeration
of boundary mesh triangles and quadrilaterals is done in the same manner as the enumer-
ation of boundary mesh edges described in Section 3.8.3. Note that the order in which the
boundary mesh triangles and quadrilaterals are enumerated is independent of the actual
ordering of the triangles and quadrilaterals on the boundary mesh surface. Keep in mind,
however, that the boundary mesh triangles and quadrilaterals must form a single continuous
manifold surface. If not all the triangles and quadrilaterals on the boundary mesh surface
have the same orientation of the outer normal, the orientation of the outer normal of the
whole surface must be defined by the identification number of a single triangle or quadrilat-
eral following keyword normal face or normal quad, respectively, otherwise an error is

35

issued. The meaning of all remaining keywords is the same as explained in Section 3.3. Note
that boundary mesh surface needs not be bounded by any boundary mesh curve no matter
whether it is closed or open. On the other hand, boundary mesh edges shared by boundare
mesh faces and/or quads forming different boundary mesh surfaces must form a boundary
mesh curve. Note also that boundary mesh consisting of quadrilaterals can be adopted only
if the source code has been compiled with directive T3D QUAD HEXA SUPPORT.

36

4 Boundary Mesh Input Data Format

There are no keywords in the boundary mesh input data file (the keywords used in following
subsection are just for better understanding). Everything on a line behind a # sign is treated
as a comment. Any number of blank spaces may be used between individual numbers. Empty
lines are ignored.

The first record contains the number of nodes, edges, triangles, and quadrilaterals (use zero
if the support for quad-hexa meshing is not enabled).

bnd nodes bnd edges bnd trias bnd quads

The second record contains the largest ids of nodes and elements in the subsequent lists
of boundary mesh nodes and elements. If zero is used for the largest node and/or element
id, then it is assumed that the (local) numbering of boundary mesh nodes and/or elements
(individually for each type of element) is continuous starting from 1. If nonzero value is
used for the largest node and/or element id, then the (global) numbering of boundary mesh
nodes and/or elements (irrespectably to their type) is arbitrary within the range from 1 to
the largest id.

max nodes id max elem id

For each boundary mesh node, the following record describing the position of the node is
expected

node id coord x coord y coord z

Boundary mesh edges, triangles, and quadrilaterals are described by the following records

edge id nd ids(1 – 2)
tria id nd ids(1 – 3)
quad id nd ids(1 – 4)

which are repeated bg edges, bg trias, and bg quads times. Note that the nodes and elements
do not have to be ordered according to their identification number. However, the ordering
nodes – edges – trias – quads is obligatory. Only linear boundary elements are supported.
Note that not all boundary mesh nodes and elements must be referred to in the actual input
file. No matter whether local or global numbering of boundary mesh nodes and/or elements
is used, the numbering of nodes and elements in the mesh produced by t3d is continuous
starting from 1 (or eventually shifted by a value defined by the appropriate command line
option (see –f option in Section 8) with no relation to the ordering of nodes and elements in
the boundary mesh.

37

5 Mesh Size Input Data Format

The format of the local mesh size control which is part of model description has been ex-
plained in Section 3.

The adaptive mesh size control is based on a background mesh. The required mesh size
is specified at nodes of this mesh and is interpolated over the individual elements of the
background mesh. The following elements can form the background mesh

• linear edge (2 nodes),

• linear triangle (3 nodes),

• linear quadrilateral (4 nodes),

• linear tetrahedron (4 nodes),

• linear pyramid (5 nodes),

• linear wedge (6 nodes),

• linear hexahedron (8 nodes).

The background mesh is generally independent of the model being discretized but it can be
(more likely) tightly connected to it. It is usually identical with the mesh generated during
the previous step of an adaptive analysis. The adaptive mesh size input data file is provided
by the application analysis code but its manual creation (as an startup mesh size control) is
also possible. The description of the background mesh input data format is provided in the
following section.

38

6 Background Mesh Input Data Format

There are no keywords in the background mesh input data file (the keywords used in following
subsection are just for better understanding). Everything on a line behind a # sign is treated
as a comment. Any number of blank spaces may be used between individual numbers. Empty
lines are ignored.

The background mesh input data file can contain either the description of background mesh
in a single file or the specification how many independent background mesh files, each one
describing a separate background mesh, are to be processed. In the latter case, the format
of the first record of the background mesh input data file contains the neutral mesh type
identifier (zero), the number of separate background mesh files and their naming type.

0 number of bgmesh files naming type

The naming type can take three different values – 0, 1, and -1. For naming type equal to
0 or 1, the file names of individual background mesh files are expected to be derived from
the name of the background mesh input data file by extending it using a numerical suffix
corresponding to the serial number of the particular background mesh file. The numbering
of individual background mesh files must be continuous starting either from 0 or from 1,
according to the naming type. This naming convention is motivated by the rank numbering
in a parallel analysis, because the feature of multiple background mesh files was originally
introduced to support parallel adaptive analysis. For naming type equal to -1, the names
of the individual background mesh files are present directly in the background mesh input
data file on subsequent lines. Note that each name must be specified on a separate line using
either an absolute path or using a path relative to the working directory (from which T3d
is executed).
The first record of the background mesh file describing a mesh contains the mesh type (3 -
triangular/tetrahedral mesh, 4 - quadrilateral/hexahedral mesh, 7 - mixed mesh), element
degree (1 - linear, 2 - quadratic, 3 - quadratic bubble), and optionally also the specification
of the range of values (1 - positive values only, 0 - non-negative values only, -1 - all real
values) the mesh size at individual nodes of the background mesh can attain. If the range
specification is not provided, default zero value is used.

mesh type elem degree range spec

The second record of the background mesh file then contains the overall numbers of
background nodes and elements in one of the following formats according to the mesh type.

• triangular/tetrahedral mesh (mesh type = 3)

bg nodes bg edges bg trias bg tetras

• quadrilateral/hexahedral mesh (mesh type = 4)

bg nodes bg edges bg quads bg hexas

39

• mixed mesh (mesh type = 7)

bg nodes bg edges bg trias bg quads bg tetras bg pyrams bg wedges bg hexas

For each background node, the following record describing the position of the node and
associated mesh size is expected. The zero or negative mesh size is treated (if allowed by
the range specification) as size corresponding to the size of model extent.

node id coord x coord y coord z mesh size

Background edges, triangles, quadrilaterals, tetrahedra, pyramids, wedges, and hexahedra
are described by the following records

edge id nd ids(1 – 2) [mid nd ids(?)]
tria id nd ids(1 – 3) [mid nd ids(?)]
quad id nd ids(1 – 4) [mid nd ids(?)]
tetra id nd ids(1 – 4) [mid nd ids(?)]
pyram id nd ids(1 – 5) [mid nd ids(?)]
wedge id nd ids(1 – 6) [mid nd ids(?)]
hexa id nd ids(1 – 8) [mid nd ids(?)]

which are repeated bg edges, bg trias, bg quads, bg tetras, bg pyrams, bg wedges, and bg hexas
times. The mid-nodes related to quadratic and quadratic bubble elements are ignored. Back-
ground nodes as well as backround elements of each type must be numbered continuously
starting from 1, but within the block of nodes or elements of the same type, they can be
ordered arbitrarily. However, the ordering nodes – edges – trias – quads – tetras – pyrams
– wedges – hexas is obligatory.

40

7 Mesh Output Format

The output of the mesh data is formatted in such a way that it can be read by another
application either in a fixed or free format. There are no keywords in the mesh output
format (the keywords used in this section are just for better understanding). The output is
organized in blocks separated by a free line (if there is no output in a particular block the
corresponding free line is omitted as well). The corresponding fixed format in Fortran style
is enclosed in parenthesis at the end of the same line. If the description of a particular record
of output format is too long it is split to several lines. In that case the corresponding format
in Fortran style is split equivalently. The actual number of items on output is provided in
parenthesis if necessary. Since the actual output is controlled by a command line option (see
–p option in Section 8), items of the output format which are dependent on that option are
enclosed in brackets. If some of them are not requested for the output the corresponding
part of the format should be skipped.

Note that some features of the output are enabled or disabled if the source code is compiled
with certain directives. The output of neighbouring elements is supported only if the code
has been compiled with the T3D OUTPUT NEIGHBOUR directive.

Each mesh entity is always classified to the particular model entity of the lowest possible
dimension (irrespectably whether this entity is hidden or not). The integer types are assigned
to individual model entities (including interfaces) as follows

• entity type 1 = vertex

• entity type 2 = curve

• entity type 3 = surface

• entity type 4 = region

• entity type 5 = patch

• entity type 6 = shell

• entity type 7 = interface

Block No 1 contains mesh type (3 - triangular/tetrahedral mesh, 4 - quadrilateral/hexahedral
mesh, 7 - mixed mesh), element degree (1 - linear, 2 - quadratic), applied renumbering type
(0 - none renumbering, 1 - node renumbering, 2 - element renumbering), and output type
(see –p option in Section 8) followed by the number of nodes and elements in one of the
following formats according to the mesh type.

• triangular/tetrahedral mesh (mesh type = 3)

mesh type elem degree renum type output type (4I10)
nodes edges trias tetras (4I10)

• quadrilateral/hexahedral mesh (mesh type = 4)

41

mesh type elem degree renum type output type (4I10)
nodes edges quads hexas (4I10)

• mixed mesh (mesh type = 7)

mesh type elem degree renum type output type (4I10)
nodes edges trias quads tetras pyrams wedges hexas (8I10)

Block No 2 consists of records for each node in one of the following formats depending on
the node primary classification to the parent model entity of the lowest possible dimension

• vertex (entity type = 1)

node id coords(3) ent type ent id ent prop (I10, 3F15.6, I5, I10, I10,
[sec clasfs [ent type ent id ent prop](sec clasfs)] [I5, (sec clasfs)[I5, I10, I10]])

• curve (entity type = 2)

node id coords(3) ent type ent id ent prop (I10, 3F15.6, I5, I10, I10,
[sec clasfs [ent type ent id ent prop](sec clasfs)] [I5, (sec clasfs)[I5, I10, I10]]
[tangent(3)] [par coords(1)] [5X, 3F10.6], [5X, F10.6])

• surface (entity type = 3)

node id coords(3) ent type ent id ent prop (I10, 3F15.6, I5, I10, I10,
[sec clasfs [ent type ent id ent prop](sec clasfs)] [I5, (sec clasfs)[I5, I10, I10]]
[normal(3)] [par coords(2)] [5X, 3F10.6], [5X, 2F10.6])

• region (entity type = 4)

node id coords(3) ent type ent id ent prop (I10, 3F15.6, I5, I10, I10,
[sec clasfs [ent type ent id ent prop](sec clasfs)] [I5, (sec clasfs)[I5, I10, I10]]

• patch (entity type = 5)

node id coords(3) ent type ent id ent prop (I10, 3F15.6, I5, I10, I10,
[sec clasfs [ent type ent id ent prop](sec clasfs)] [I5, (sec clasfs)[I5, I10, I10]]
[normal(3)] [par coords(2)] [5X, 3F10.6], [5X, 2F10.6])

• shell (entity type = 6)

node id coords(3) ent type ent id ent prop (I10, 3F15.6, I5, I10, I10,
[sec clasfs [ent type ent id ent prop](sec clasfs)] [I5, (sec clasfs)[I5, I10, I10]]
[normal(3)] [par coords(2)] [5X, 3F10.6], [5X, 2F10.6])

42

If output of nodal parameter(s), tangent, or normal is requested for quadratic boundary non-
conforming mesh, the parameter(s), tangent, or normal at mid-edge nodes are computed
as if boundary conforming mesh would have been requested. Note that output of nodal
parameter(s), tangent, or normal for quadratic bubble boundary non-conforming mesh is
ignored in the current version.
Also note that nodes classified to a vertex or curve are always classified to the most top
physical parent vertex or curve, respectively. This also implies that the nodeprop, elemprop,
and elemgroup specifications described in Section 3 are relevant at the most top physical
parent model entity. Except for the compulsory primary classification, the optional secondary
classification to model entities (excluding interface entity) of dimension higher than that
of the primary classification may be provided. Note that there is always zero number of
secondary classifications for a region node. The parametric coordinates of a node on a patch
refer to a fictitious rectangular bilinear planar surface not defined in the input model (and
are provided just for completeness). The secondary classification, tangent, normal, and
parametric coordinates in block No 2 are provided only if appropriate output specification
(–p option) has been used. In the current implementation, there are no nodes classified to
interface.

Block No 3 consists of records for each edge in one of the following formats depending on the
element degree (linear or quadratic or quadratic bubble). Entity type is equal to 2 (curve)
or 7 (interface).

• linear edge

edge id node id(2) ent type ent id ent prop (I10, 2I10, I5, I10, I10)

• quadratic and quadratic bubble edge

edge id node id(3) ent type ent id ent prop (I10, 3I10, I5, I10, I10)

Note that edges classified to a curve are always classified to the most top physical parent
curve. The node numbering of an edge element is provided in Figure 1. In the case of
quadratic and quadratic bubble interface edge, there is no mid-edge node. Therefore the
third node has always zero id.

Block No 4 (not present for mesh type 4) consists of records for each triangle in one of the
following formats depending on the element degree (linear or quadratic or quadratic bubble).
the entity type is equal to 3, 5, or 6, according to the classification of the triangle to a surface,
patch, or shell, respectively.

1 2 1 3 2

Figure 1: Node numbering of an edge element (linear element – left, quadratic and quadratic
bubble element – right). Symbols: filled circle – corner node, empty circle – mid-edge node

43

• linear triangle

tria id node id(3) ent type ent id ent prop (I10, 3I10, I5, I10, I10,
[iso type] [ngb elem id(3)] [I5], [3I10]
[bnd curve id(3) bnd curve prop(3)] [6I10])

• quadratic triangle

tria id node id(6) ent type ent id ent prop (I10, 6I10, I5, I10, I10,
[iso type] [ngb elem id(3)] [I5], [3I10]
[bnd curve id(3) bnd curve prop(3)] [6I10])

• quadratic bubble triangle

tria id node id(7) ent type ent id ent prop (I10, 6I10, I5, I10, I10,
[iso type] [ngb elem id(3)] [I5], [3I10]
[bnd curve id(3) bnd curve prop(3)] [6I10])

The bounding curve ids (zero means no boundary curve) and property ids are provided to
simplify the boundary condition specification. The node and edge numbering of a triangular
element is depicted in Figure 2. Note that the numbering of neighbouring elements is in
agreement with the edge numbering. The iso type refers to the type of the element in
terms of its size, shape, and orientation. Positive value stands for particular type of iso
element, zero value is used for variable-sized elements. The iso type numbering is generally
non-continuous and is unique only for elements classified to the same patch. Thus elements
of the same iso type classified to the same patch are exactly of the same size, shape, and
orientation.

Block No 5 (not present for mesh type 3) consists of records for each quadrilateral in one
of the following formats depending on the element degree (linear or quadratic or quadratic
bubble). the entity type is equal to 3, 5, 6, or 7 according to the classification of the
quadrilateral to a surface, patch, shell, or interface, respectively.

3

3 2

1 21

5

3

6

4 21

5

3

6

4 21

7

Figure 2: Node and edge numbering of a triangular element (linear element – left, quadratic
element – middle, quadratic bubble element – right). Symbols: filled circle – corner node,
empty circle – mid-edge node, empty square – mid-face node

44

• linear quadrilateral

quad id node id(4) ent type ent id ent prop (I10, 4I10, I5, I10, I10,
[iso type] [ngb elem id(4)] [I5], [4I10]
[bnd curve id(4) bnd curve prop(4)] [8I10])

• quadratic quadrilateral

quad id node id(8) ent type ent id ent prop (I10, 8I10, I5, I10, I10,
[iso type] [ngb elem id(4)] [I5], [4I10]
[bnd curve id(4) bnd curve prop(4)] [8I10])

• quadratic bubble quadrilateral

quad id node id(9) ent type ent id ent prop (I10, 8I10, I5, I10, I10,
[iso type] [ngb elem id(4)] [I5], [4I10]
[bnd curve id(4) bnd curve prop(4)] [8I10])

The bounding curve ids (zero means no boundary curve) and property ids are provided to
simplify the boundary condition specification. The node and edge numbering of a quadrilat-
eral element is depicted in Figure 3. Note that the numbering of neighbouring elements is in
agreement with the edge numbering. The iso type refers to the type of the element in terms
of its shape and orientation. Non-zero value stands for particular type of iso element, zero
value is used for variable-sized elements. The iso type numbering is generally non-continuous
and is unique only in the frame of parent patch entity.

For the interface quadrilateral element, the first edge corresponds to the interface master
curve and the third edge to the interface slave curve. Only the elements classified to the
same interface are considered as neighbouring elements. Thus there are never neighbouring
elements adjacent to the first and the third edge of the interface quadrilateral element.
Moreover, there are also no neighbouring elements over those remaining edges that are not
shared just by two quadrilateral elements classified to the same interface. Since the interface
is bounded only in one direction (by opposite curves), there is no curve corresponding to
the boundary in the other direction. Therefore boundary curve id, corresponding to those
from the second and last edge of the interface quadrilateral element over which there is no

4

3

2

1 21

4 3

68

1 5 2

4 7 3

68

1 5 2

4 7 3

9

Figure 3: Node and edge numbering of a quadrilateral element (linear element – left,
quadratic element – middle, quadratic bubble element – right). Symbols: filled circle –
corner node, empty circle – mid-edge node, empty square – mid-face node

45

neighbouring element classified to the same interface, is set to -1 representing a fictitious
interface boundary. In the case of the quadratic interface quadrilateral element, there are
no mid-edge nodes on edges connecting the master and slave curve. Moreover, in the case of
quadratic bubble interface quadrilateral element, there is also no mid-face node. Therefore
zero ids are used for mid-edge nodes corresponding to the second and last edge of the
quadratic and quadratic bubble interface quadrilateral element and to mid-face node of
quadratic bubble interface quadrilateral element.

Block No 6 (not present for mesh type 4) consists of records for each tetrahedron in one
of the following formats depending on the element degree (linear or quadratic or quadratic
bubble). Entity type is equal to 4 (region).

• linear tetrahedron

tetra id node id(4) ent type ent id ent prop (I10, 4I10, I5, I10, I10,
[ngb elem id(4)] [4I10]
[bnd ent id(4) bnd ent type(4) bnd ent prop(4)] [4I10, 4I5, 4I10])
[bnd curve id(6) bnd curve prop(6)] [6I10, 6I10])

• quadratic tetrahedron

tetra id node id(10) ent type ent id ent prop (I10, 10I10, I5, I10, I10,
[ngb elem id(4)] [4I10]
[bnd ent id(4) bnd ent type(4) bnd ent prop(4)] [4I10, 4I5, 4I10)
[bnd curve id(6) bnd curve prop(6)] [6I10, 6I10)

• quadratic bubble tetrahedron

tetra id node id(15) ent type ent id ent prop (I10, 10I10, I5, I10, I10,
[ngb elem id(4)] [4I10]
[bnd ent id(4) bnd ent type(4) bnd ent prop(4)] [4I10, 4I5, 4I10)
[bnd curve id(6) bnd curve prop(6)] [6I10, 6I10)

The bounding model entity ids and property ids are provided to simplify the boundary
condition specification. If there is no boundary model entity/curve on a particular face/edge
of a tetrahedron then corresponding boundary entity/curve id and boundary entity type are
equal to zero. The node and face numbering of a tetrahedral element is displayed in Figure 4.
The edge numbering starts from 1 and its ordering follows the ordering of mid-edge nodes.
The numbering of neighbouring elements corresponds to the face numbering.

Block No 7 (not present for mesh type 3 or 4) consists of records for each pyramid in one
of the following formats depending on the element degree (linear or quadratic or quadratic
bubble). Entity type is equal to 4 (region).

46

2

4

1 31

2 3

2

6

9

10

4

1 7 3

5

8

2

6

9

10

4

1 3

5

8

11
7

13
12

14

15
4

Figure 4: Node and face numbering of a tetrahedral element (linear element – left, quadratic
element – middle, quadratic bubble element – right). Symbols: filled circle – corner node,
empty circle – mid-edge node, empty square – mid-face node (ordering according face num-
bers), filled square – mid-cell node

• linear pyramid

pyram id node id(5) ent type ent id ent prop (I10, 5I10, I5, I10, I10,
[ngb elem id(5)] [5I10]
[bnd ent id(5) bnd ent type(5) bnd ent prop(5)] [5I10, 5I5, 5I10])
[bnd curve id(8) bnd curve prop(8)] [8I10, 8I10)

• quadratic pyramid

pyram id node id(13) ent type ent id ent prop (I10, 13I10, I5, I10, I10,
[ngb elem id(5)] [5I10]
[bnd ent id(5) bnd ent type(5) bnd ent prop(5)] [5I10, 5I5, 5I10])
[bnd curve id(8) bnd curve prop(8)] [8I10, 8I10)

• quadratic bubble pyramid

pyram id node id(19) ent type ent id ent prop (I10, 13I10, I5, I10, I10,
[ngb elem id(5)] [5I10]
[bnd ent id(5) bnd ent type(5) bnd ent prop(5)] [5I10, 5I5, 5I10])
[bnd curve id(8) bnd curve prop(8)] [8I10, 8I10)

The bounding model entity ids and property ids are provided to simplify the boundary
condition specification. If there is no boundary model entity on a particular face of a pyramid
then corresponding boundary entity id and boundary entity type are equal to zero. The node
and face numbering of a pyramidal element is displayed in Figure 5. The edge numbering
starts from 1 and its ordering follows the ordering of mid-edge nodes. The numbering of
neighbouring elements corresponds to the face numbering.

47

1 2

4 3

5

1 2

4 3

5

6

7
9

10

1213

8
11

1 2

4 3

5

6

7
9

10

1213

15
14

11
19

18
17

8

162

1

4

35

Figure 5: Node and face numbering of a pyramid element (linear element – left, quadratic
element – middle, quadratic bubble element – right). Symbols: filled circle – corner node,
empty circle – mid-edge node, empty square – mid-face node (ordering according face num-
bers), filled square – mid-cell node

Block No 8 (not present for mesh type 3 or 4) consists of records for each wedge (triangular
prism) in one of the following formats depending the element degree (linear or quadratic or
quadratic bubble). Entity type is equal to 4 (region) or 7 (interface).

• linear wedge

wedge id node id(6) ent type ent id ent prop (I10, 6I10, I5, I10, I10,
[ngb elem id(5)] [5I10]
[bnd ent id(5) bnd ent type(5) bnd ent prop(5)] [5I10, 5I5, 5I10])
[bnd curve id(9) bnd curve prop(9)] [9I10, 9I10)

• quadratic wedge

wedge id node id(15) ent type ent id ent prop (I10, 15I10, I5, I10, I10,
[ngb elem id(5)] [5I10]
[bnd ent id(5) bnd ent type(5) bnd ent prop(5)] [5I10, 5I5, 5I10])
[bnd curve id(9) bnd curve prop(9)] [9I10, 9I10)

• quadratic bubble wedge

wedge id node id(21) ent type ent id ent prop (I10, 15I10, I5, I10, I10,
[ngb elem id(5)] [5I10]
[bnd ent id(5) bnd ent type(5) bnd ent prop(5)] [5I10, 5I5, 5I10])
[bnd curve id(9) bnd curve prop(9)] [9I10, 9I10)

The bounding model entity ids and property ids are provided to simplify the boundary
condition specification. If there is no boundary model entity on a particular face of a wedge
then corresponding boundary entity id and boundary entity type are equal to zero. The
node and face numbering of a wedge element is displayed in Figure 6. The edge numbering
starts from 1 and its ordering follows the ordering of mid-edge nodes. The numbering of
neighbouring elements corresponds to the face numbering.

48

3

5

6

1

4

2

3

5

6

7 8

9

10 11

12

13

14

15

2

1

4

3

5

6

7 8

10 11

12

13
15

2

1

4

18

20

17

19

21

16

9 14

4

2

1

5

3

Figure 6: Node and face numbering of a wedge element (linear element – left, quadratic ele-
ment – middle, quadratic bubble element – right). Symbols: filled circle – corner node, empty
circle – mid-edge node, empty square – mid-face node (ordering according face numbers),
filled square – mid-cell node

For the interface wedge element, the first face corresponds to the interface master entity and
the second face to the interface slave entity. Only the elements classified to the same inter-
face are considered as neighbouring elements. Thus there are never neighbouring elements
adjacent to the triangular faces of the interface wedge element. Moreover, there are also no
neighbouring elements over those quadrilateral faces that are not shared by two elements
classified to the same interface. Since the interface is bounded only in one direction (by op-
posite surfaces, patches, or shells), there are no entities corresponding to the boundary in the
other directions. Therefore boundary entity id, corresponding to those from the quadrilateral
faces of the interface wedge element over which there is no neighbouring element classified
to the same interface, is set to -1 representing a fictitious interface boundary of zero type.
Note that -1 is also used as curve id for relevant interface edges bounding quadrilateral face
with that fictitious interface boundary. In the case of the quadratic interface wedge element,
there are no mid-edge nodes on edges connecting the master and slave entity. Moreover, in
the case of quadratic bubble interface wedge element, there are also no mid-face nodes on
faces connecting master and slave entity and no mid-cell node. Therefore zero ids are used
for the last three mid-edge nodes of the quadratic interface wedge element and also for the
last three mid-face nodes and for the mid-cell node of the quadratic bubble wedge element.

Block No 9 (not present for mesh type 3) consists of records for each hexahedron in one
of the following formats depending on the element degree (linear or quadratic or quadratic
bubble). Entity type is equal to 4 (region) or 7 (interface).

• linear hexahedron

hexa id node id(8) ent type ent id ent prop (I10, 8I10, I5, I10, I10,
[iso type] [ngb elem id(6)] [I5], [6I10]
[bnd ent id(6) bnd ent type(6) bnd ent prop(6)] [6I10, 6I5, 6I10])
[bnd curve id(12) bnd curve prop(12)] [12I10, 12I10)

49

3

5
46

1 2

4 3

5 6

78

196

1 9 2

12
10

4 11 3

5

78

17

14

15
16

13

18
20

6

1 9 2

12
10

4 11 3

5

78

17

14

15
16

20 19

18

13

21

22

23

24
25

26
27

2

1

Figure 7: Node and face numbering of a hexahedral element (linear element – left, quadratic
element – middle, quadratic bubble element – right). Symbols: filled circle – corner node,
empty circle – mid-edge node, empty square – mid-face node (ordering according face num-
bers), filled square – mid-cell node

• quadratic hexahedron

hexa id node id(20) ent type ent id ent prop (I10, 20I10, I5, I10, I10,
[iso type] [ngb elem id(6)] [I5], [6I10]
[bnd ent id(6) bnd ent type(6) bnd ent prop(6)] [6I10, 6I5, 6I10])
[bnd curve id(12) bnd curve prop(12)] [12I10, 12I10)

• quadratic bubble hexahedron

hexa id node id(27) ent type ent id ent prop (I10, 20I10, I5, I10, I10,
[iso type] [ngb elem id(6)] [I5], [6I10]
[bnd ent id(6) bnd ent type(6) bnd ent prop(6)] [6I10, 6I5, 6I10])
[bnd curve id(12) bnd curve prop(12)] [12I10, 12I10)

The bounding model entity ids and property ids are provided to simplify the boundary con-
dition specification. If there is no boundary model entity on a particular face of a hexahedron
then corresponding boundary entity id and boundary entity type are equal to zero. The node
and face numbering of a hexahedral element is displayed in Figure 7. The edge numbering
starts from 1 and its ordering follows the ordering of mid-edge nodes. The numbering of
neighbouring elements corresponds to the face numbering. The iso type refers to the type of
the element in terms of its size, shape, and orientation. Positive value stands for particular
type of iso element, zero value is used for variable-sized elements. The iso type numbering
is generally non-continuous and is unique only for elements classified to the same region.
Thus elements of the same iso type classified to the same region are exactly of the same size,
shape, and orientation.

For the interface hexahedral element, the first face corresponds to the interface master entity
and the second face to the interface slave entity. Only the elements classified to the same
interface are considered as neighbouring elements. Thus there are never neighbouring ele-
ments adjacent to the first and second faces of the interface hexahedral element. Moreover,

50

there are also no neighbouring elements over those remaining faces that are not shared by
two elements classified to the same interface. Since the interface is bounded only in one
direction (by opposite surfaces, patches, or shells), there are no entities corresponding to the
boundary in the other directions. Therefore boundary entity id, corresponding to those from
the last four faces of the interface hexahedral element over which there is no neighbouring
element classified to the same interface, is set to -1 representing a fictitious interface bound-
ary of zero type. Note that -1 is also used as curve id for relevant interface edges bounding
quadrilateral face with that fictitious interface boundary. In the case of the quadratic in-
terface hexahedral element, there are no mid-edge nodes on edges connecting the master
and slave entity. Moreover, in the case of quadratic bubble interface hexahedral element,
there are also no mid-face nodes on faces connecting master and slave entity and no mid-cell
node. Therefore zero ids are used for the last four mid-edge nodes of the quadratic interface
hexahedral element and also for the last four mid-face nodes and for the mid-cell node of
the quadratic bubble hexahedral element.

Note that there is only one global element numbering (it means that different types of ele-
ments are not numbered independently). The output of neighbouring elements and boundary
entities in blocks No 4, 5, 6, 7, 8, and 9 are provided only if appropriate output specification
(–p option) has been used. Similarly, the output of iso type for elements in blocks 4, 5, and 9
is controlled by output specification (–p option). Also note that the output of the following
blocks (blocks No. 10, 11, 12, 13, and 14) is dependent on the –p option in the similar way
as was the case for the previous blocks. The actual form of the output may be checked by
executing the program with –Fout option and appropriate –p option.

Block No 10 consists of the number of curves, surfaces, patches, and shells for which the list
of associated elements is provided.

[curves surfaces patches shells] ([4I10])

Block No 11 contains curve entity type (equal to 2), curve id, curve property, and number
of 1D elements (edges) on the curve. This first record is followed by records (for each of the
curve edges) containing number of 2D elements (triangles and quadrilaterals) connected to
the edge and list of ids of these connected 2D elements. The order in which these records
appear on the output is identical with the edge ordering if the curve would have been
designated for output. The order of connected elements is not defined. Note that interface
2D elements are not considered. If the parent entity of the connected 2D element has not
been designated for the output the element does not appear in the list of connected elements.
If neither from the 2D model entities connected to the curve is designated for the output,
the curve does not appear in this block.

[curve ent type curve id curve prop elems] ([4I10])
[con elems con elems ids(con elems)] ([I10,(con elems)I10])

Block No 11 is repeated for all physical curves for which the output of associated elements
has not been disabled on the input (see keyword bassoc in Section 3.2) or during run-time
and the total number of which is given in block No 6.

51

Block No 12 contains surface entity type (equal to 3), surface id, surface property, and
number of 2D elements (triangles and quadrilaterals) on the surface. This first record is
followed by records (for each of the surface elements) containing number of 3D elements
(tetrahedra, pyramids, wedges, and hexahedra) connected to the surface 2D element and
list of ids of these connected 3D elements. The order in which these records appear on the
output is identical with the 2D element ordering if the surface would have been designated for
output. The order of connected 3D elements is not defined. Note that interface 3D elements
are not considered. If the region of the connected 3D element has not been designated for
the output the element does not appear in the list of connected elements. If neither from
the regions bounded by the surface is designated for the output, the surface does not appear
in this block.

[surface ent type surface id surface prop elems] ([4I10])
[con elems con elems ids(con elems)] ([I10,(con elems)I10])

Block No 12 is repeated for all physical solid surfaces for which the output of associated
elements has not been disabled on the input (see keyword bassoc in Section 3.3) or during
run-time and the total number of which is given in block No 6.

Block No 13 contains patch entity type (equal to 5), patch id, patch property, and number
of 2D elements (triangles and quadrilaterals) on the patch. This first record is followed
by records (for each of the patch elements) containing number of 3D elements (tetrahedra,
pyramids, wedges, and hexahedra) connected to the patch 2D element and list of ids of these
connected 3D elements. The order in which these records appear on the output is identical
with the 2D element ordering if the patch would have been designated for output. The order
of connected 3D elements is not defined. Note that interface 3D elements are not considered.
If the region of the connected 3D element has not been designated for the output the element
does not appear in the list of connected elements. If neither from the regions bounded by
the patch is designated for the output, the patch does not appear in this block.

[patch ent type patch id patch prop elems] ([4I10])
[con elems con elems ids(con elems)] ([I10,(con elems)I10])

Block No 13 is repeated for all physical solid patches for which the output of associated
elements has not been disabled on the input (see keyword bassoc in Section 3.4) or during
run-time and the total number of which is given in block No 6.

Block No 14 contains shell entity type (equal to 6), shell id, shell property, and number of 2D
elements (triangles and quadrilaterals) on the shell. This first record is followed by records
(for each of the shell elements) containing number of 3D elements (tetrahedra, pyramids,
wedges, and hexahedra) connected to the shell 2D element and list of ids of these connected
3D elements. The order in which these records appear on the output is identical with the 2D
element ordering if the shell would have been designated for output. The order of connected
3D elements is not defined. Note that interface 3D elements are not considered. If the region
of the connected 3D element has not been designated for the output the element does not
appear in the list of connected elements. If neither from the regions bounded by the shell is

52

designated for the output, the shell does not appear in this block.

[shell ent type shell id shell prop elems] ([4I10])
[con elems con elems ids(con elems)] ([I10,(con elems)I10])

Block No 14 is repeated for all physical solid shells for which the output of associated elements
has not been disabled on the input (see keyword bassoc in Section 3.5) or during run-time
and the total number of which is given in block No 6.

7.1 Binary Mesh Output

Provided the code has been compiled with the T3D BINARY SUPPORT directive, the mesh
output can be also performed in binary regime. This is enforced by setting properly the
output specification (see –p command line option). The binary output contains all the data
present in the formatted output. In C terminology, all integer values are saved as long
values excepts for values of entity type which are saved as short values. All floating point
numbers are saved as double values. On 32-bit architecture the types long, short, and double
correspond to 4-, 2-, and 8-Byte representation, respectively. Note that the binary output
is generally platform dependent and therefore it is not portable.

53

8 Command Line Options

The program may be executed by typing

t3d [option [parameter]] . . .

on the command line prompt with the following command line options:1

–h - displays program usage description

–P - displays program command line parameters description

–F - displays format of input file, output file, and background mesh file;
note that the description of output file format takes into account the actually
applied –p and –k options; the other options are ignored; alternatively options
–Fin, –Fout, and –Fbgm may be used do display format of the selected files only;
if the code has been compiled with the T3D BND MESH directive, option –Fbnd
can be used to display format of boundary mesh file

–Q - silent mode (all messages to standard output and standard error channels are
discarded); alternatively options –Qout, –Qerr may be used do discard messages
to selected standard channel only; note that this option does not affect output to
log file

–W - suppresses warning messages;
note that element quality warnings may be suppressed by compiling the code
without the T3D QUALITY WARNING directive

–V - includes virtual entities into the domain extent

–C - enables curvature violation on surface and shell; (triangles and quadrilaterals with
node normals differing by more than 120◦ are allowed);
this option is effective only if the code has been compiled with
the T3D VIOLATION directive

–B - generates boundary conforming elements;
this option is relevant only for quadratic and quadratic bubble elements (see
option –k)

–A - disables default designation of boundary model entities (curves, surfaces, patches,
and shells) for output of boundary associated elements;
this option is relevant only if output of boundary associated elements is required
(see option –p)

–S - disables nodal smoothing for surface, patch, shell, and region triangulation;
note that this option prevents removing slivers from region triangulation; this
options also prevents handling nonplanar patches (an error occurs)

–H - disables support for quadrilateral and hexahedral meshing;
note that this options prevents discretization of interfaces

1The arguments of the parameterized options are specified symbolically in parenthesis behind the op-
tion (terms fp#, in#, and string stand for floating point number, for integer number, and for text string
respectively).

54

–K - enables convexity check for mapped quadrilateral elements;
this option works only without option –H being used

–i - (string) input model file name;
if this option is not present, an error occurs unless option –b is used or unless the
code has been compiled with the T3D FUNCTION INPUT directive and called
as a subroutine (see README for details)

–o - (string) output mesh file name;
output of mesh is realized only if this option is used unless the code has been com-
piled with the T3D FUNCTION OUTPUT directive and called as a subroutine
(see README for details)

–g - (string) output log file name;
by default no log file is produced; note that –Q option does not affect output to
log file

–m - (string) input background mesh file name

–b - (string) binary model file name;
when being used together with option –i or if the code has been compiled with
the T3D FUNCTION INPUT directive, binary output is performed (irrespec-
tively, whether T3D FUNCTION OUTPUT directive is defined or not) otherwise
binary input is performed;
note that binary input is successful only if the binary (output) file was created
by compatible executable (on the same platform);
this options is enabled only if the code has been compiled with
the T3D BINARY SUPPORT directive

–x - (string) output graphics (Elixir) file name

–n - (7× in#) number of model entities and interfaces;
this option specifies the estimate on number of individual entities and interfaces
in model representation (including virtual ones); the entities are ordered: vertices,
curves, surfaces, patches, shell, regions, and interfaces; must not be negative; by
default zero number of model entities of each type is assumed; if applied no model
entity of corresponding type is allowed to have larger id than the specified value;
need not be applied to all types of model entities

–f - (2× in#) numbering shift;
this option specifies the shift for node and element numbering; must not be neg-
ative; no numbering shift is applied by default

–L - (in#) default listing size;
this option defines the length of listing which is allocated as a contiguous block
of memory; ranges from 10 to 10000; default value is 1000

–T - (in#) hash table size;
this option defines the size of hash table used to access model entities; the larger
value the faster access but larger memory demands; must be positive; default
value is 100

–r - (in#) renumbering type;
some cumulative combinations of the following specifications may be used

55

0 - no renumbering (default)
1 - renumbering of nodes
2 - renumbering of elements (disabled)
4 - fast renumbering

specification 4 is relevant only if used cumulatively with specification 1 or 2; it
attempts to shorten the renumbering time by skipping passes the are not likely
to produce the best renumbering; renumbering is disabled for quadratic bubble
elements

–s - (in#) type of weighting applied during the Laplacian smoothing;
this option is relevant only if option –S is not used; any cumulative combination
of the following types may be used

0 - no weighting (default)
1 - mesh size weighting
2 - connectivity weighting

–k - (in#) element degree;
one of the following types must be used

1 - linear (default)
2 - quadratic
3 - quadratic bubble (quadratic with mid-face and mid-cell nodes)

note that mid-edge nodes on quadratic and quadratic bubble elements and mid-
face nodes on quadratic bubble elements do not follow possible curvature of model
boundary unless the –B option is specified; quadratic bubble elements are disabled
unless the code has been compiled with the T3D BUBBLE ELEMENT directive;
use of quadratic bubble elements does not allow mesh renumbering

–j - (in#) limit on the number of generated nodes;
no limit (zero value) by default

–p - (in#) additional output specification;
any cumulative combination of the following specifications may be used

0 - no additional output (default)
1 - output of parametric coordinate(s)

(only nodes classified to a curve, surface, patch, or shell)
note that this specification is ignored if generation of quadratic bubble ele-
ments (see option -k) is required without request to generate boundary con-
forming elements (see option -B)

2 - output of node tangent
(only nodes classified to a curve)
note that this specification is ignored if generation of quadratic bubble ele-
ments (see option -k) is required without request to generate boundary con-
forming elements (see option -B)

4 - output of node normal
(only nodes classified to a surface, patch, or shell)
note that this specification is ignored if generation of quadratic bubble ele-
ments (see option -k) is required without request to generate boundary con-
forming elements (see option -B)

56

8 - output of boundary model entities
(curves to which edges of 2D elements are classified and surfaces, patches, or
shells to which faces of 3D elements are classified)

16 - output of elements associated with boundary model entities
(2D elements associated with a curve and 3D elements associated with a sur-
face, patch, or shell)

32 - output of neighbouring elements
this specification is enabled only if the code has been compiled with the
T3D OUTPUT NEIGHBOUR directive

64 - output of element iso type
types are numbered from zero separately for each relevant model entity (sur-
face, patch, shell); zero type stands for variable-sized element

128 - output of nodes in T3d native order
native ordering follows the mesh generation order: vertex, curve, surface,
patch, shell, region corner (linear) nodes, curve, surface, patch, shell, region
mid-edge (quadratic) nodes, surface, patch, shell mid-face (bubble) nodes,
region mid-face (bubble) nodes, region mid-cell (bubble) nodes; this specifi-
cation is relevant only if used together with node renumbering request (see
option –r)

256 - output of node secondary classification(s)
(classification to model entities of higher dimension than that of primary
classification)

512 - complete output of boundary model entities
(curves to which edges of 2D and 3D elements are classified and surfaces,
patches, or shells to which faces of 3D elements are classified)
note that this specification is a generalized version of specification 8; therefore
specification 8 is automatically activated when this specification is applied

1024 - mesh output even if zero element quality detected
2048 - perform binary output;

this specification is ignored if the code has been compiled with T3D
FUNCTION OUTPUT directive and called as a subroutine (see README
for details); this specification is enabled only if the code has been compiled
with the T3D BINARY SUPPORT directive

4096 - simple output;
output of mesh entities in blocks No 2–9 is performed without classification
to model entities and without any additional data irrespectably to remaining
output specification; does not apply to binary output

8192 - split output into separate files according to individual output blocks;
files are distinguished according to suffix added to supplied output file name:

block No 1 - suffix .numbers
block No 2 - suffix .nodes
block No 3 - suffix .edges
block No 4 - suffix .trias
block No 5 - suffix .quads
block No 6 - suffix .tetras
block No 7 - suffix .pyrams
block No 8 - suffix .wedges

57

block No 9 - suffix .hexas
blocks No 10–14 - suffix .bassoc

files corresponding to blocks No 2–9 are created only if the number of cor-
responding mesh entities is nonzero; file corresponding to blocks No 10–14
is created if output of boundary associated elements is requested; does not
apply to binary output

–q - (in#) type of mesh quality report;
any cumulative combination of the following types may be used

0 - no report

1 - element quality report (default)

2 - dihedral angle report

4 - nodal connectivity report

8 - report distribution of selected quantities

16 - disable 2D element quality report

32 - disable 3D element quality report

64 - report all model entities

128 - per model entity report

256 - color 2D element quality

512 - color 3D element quality

1024 - color quality distribution

note that if none from element quality, dihedral angle, or nodal connectivity re-
port is included in the non-zero mesh quality type then element quality report is
assumed; currently element quality report is available for all elements; dihedral
angle report is available only for unstructured triangles, quadrilaterals, tetrahe-
dra, and structured quadrilaterals; nodal connectivity report is available only for
unstructured triangular, quadrilateral, and tetrahedral meshes but it is not com-
plete for 2D mixed meshes and it is unreliable for mixed 3D meshes; by default,
only model entities designated for output are subjected to the quality report un-
less report of all model entities (specification 64) is requested; interface elements
are not subjected to quality assessment; mid-nodes are ignored for quality eval-
uation; color quality types work only together with option –X; request for color
quality distribution is ignored if drawing of mesh size contours (see –M) is re-
quired; color quality type specification can be also used to enforce visualisation
of quality of boundary mesh (if drawing of boundary mesh is explicitly requested
(see –N option)); in such a case only the default element quality is displayed

–y - (in#) type of graphics output file;
one of the following types must be used

0 - no specific graphics output (default)

1 - Elixir graphics output

2 - VRML 2.0 graphics output

3 - VTK graphics output

58

note that this option is relevant only if used together with option –x and if the
code has been compiled with the T3D GRAPHICS OUTPUT directive; note that
mid-nodes of the mesh (in case of quadratic and quadratic bubble elements) are
not exported

–z - (in#) graphics output specification;
some cumulative combinations of the following specifications may be used

0 - no graphics output specification(default)

1 - wireframe graphics output

2 - mesh size contours output

4 - reverted mesh size contours output

8 - black & white mesh size contours output

specification 1 is applied only if VRML output is required; specifications 2, 4, and
8 are irrelevant if used together with specification 1; specifications 4 and 8 are
relevant only if used cumulatively with specification 2; note that this option is
effective only if used together with nonzero option –y; this option is independent
of options –M; note that contour visualization might not be supported by all
VRML viewers; also note that some VRML viewers do not support wireframe
view unless explicitly specified; this option is relevant only if the code has been
compiled with the T3D GRAPHICS OUTPUT directive

–d - (fp#) default mesh size;
default mesh size is assigned to vertices and control points with zero mesh size
specification if local mesh size control is applied (see –v option); is used in input
file; must be positive

–u - (fp#) uniform mesh size;
uniform mesh size is propagated over all model entities; is used in input file; must
be positive

–v - (fp#) mesh size multiplication factor;
each mesh size specification except the background mesh size specification is mul-
tiplied by this factor; must not be negative; default value is 1; zero value disables
local mesh size control

–c - (fp#) default curvature rate;
it is assigned to model entities without curvature rate specification; controls the
ratio between the mesh size and radius of curvature; default value is 1; if set to 0
curvature based mesh size control is disabled for entities that do not specify any
curvature rate; is used in input file; must not be negative

–w - (fp#) curvature rate multiplication factor;
curvature rate specified for each curve and surface is multiplied by this factor;
must not be negative; default value is 1; zero value disables the curvature based
mesh size control

–t - (fp#) default curve density;
it is assigned to model curves without density specification; determines the mesh
size as the ratio between the length of the curve and the density; default value

59

is 1; if set to 0 density based mesh size control is disabled for entities that do not
specify any density; is used in input file; must not be negative

–a - (fp#) background mesh size multiplication factor;
background mesh size specification is multiplied by this factor; must not be neg-
ative; zero value disables background mesh size control; default value is 1

–e - (fp#) user defined epsilon;
the value of epsilon is used to resolve the geometrical ambiguity; the default value
is 1.0e-5

–R - (fp#) size of the root octant;
this option is ignored if the specified value is smaller then the largest dimension of
the bounding box of the domain built in the Cartesian coordinate system; must
be positive; note that the value may be increased when –U option is specified

–U - (3× fp#) origin of the root octant;
note that this option may cause increase of root octant size specified with –R
option; by default root octant origin is placed in such a way that the root octant
center coincides with the center of the domain bounding box built in the Cartesian
coordinate system

–J - (2× fp#) transition factors; the first one, ranging from 1 to 6, controls the max-
imal allowable aspect ratio of unstructured elements in the transition from fine
structured to coarse unstructured mesh; the second one, ranging from 1 to 2,
controls the maximal allowable aspect ratio of unstructured elements in the tran-
sition from coarse structured to the fine unstructured mesh; default value is 1.5
for both factors

–E - (fp#) octant size excess;
octant size excess controls the maximum ratio between the terminal octant size
and the actual required element size; ranges from 1 to 1.5; default value is 1

–X - enables interactive X-window interface based on Elixir graphic library;
this option is available only when source code was compiled with the directive
T3D ELIXIR and all prerequisite libraries (Ckit, Elixir, X Window) and header
files were available

–D - sets demonstration mode for run without user intervention;
this option works only together with option –X

–M - enables drawing of mesh size contours;
this option works only together with option –X

–N - enable drawing of background mesh;
this option works only together with option –X; when used together with option
–M, mesh size contours will be applied to background mesh only; this option can
be also used to enforce drawing of boundary mesh

–Y - (3× in#) sets plotting specifications for model, mesh, and octree (in this order);
the purpose of this option is to save memory when using graphic interface;
this option works only together with option –X
any cumulative combination of the following types may be used for the model
drawing specification

60

0 - do not draw model

1 - draw model vertices (default)

2 - draw model curves (default)

4 - draw model surface, patches, and shells (default)

8 - draw model regions (default)

16 - draw model interfaces (default)

32 - draw model vertex numbers (default)

64 - draw model curve numbers (default)

128 - draw model surface, patch, and shell numbers (default)

256 - draw model region numbers (default)

512 - draw model interface numbers (default)

any cumulative combination of the following types may be used for the mesh
drawing specification

0 - do not draw mesh

1 - draw mesh nodes (default)

2 - draw mesh 1D elements (default)

4 - draw mesh 2D elements (default)

8 - draw mesh 3D elements (default)

16 - draw mesh node numbers (default)

32 - draw mesh 1D elements numbers (default)

64 - draw mesh 2D elements numbers (default)

128 - draw mesh 3D elements numbers (default)

one of the following types may be used for the octree drawing specification

0 - do not draw octree

1 - draw octree (default)

note that drawing of the whole model, mesh, and octree is performed by default,
which corresponds to –Y 1023 255 1 plot specification; alternatively, the drawing
of the whole model and mesh can be specified by using value -1 for model and
mesh drawing specification

–@ - enables phase by phase run;
this option works only if T3D PC VERSION directive is not defined

–$ - enables step by step run;
this option works only if T3D PC VERSION directive is not defined

–# - specifies element removal when discretizing regions (unstructured tetrahedral mesh);
this option works only together with options –X and –$

–ver - prints the version of T3d;
the version information is printed also if any of –h, –P, -F, and –dir command
line options is specified and if T3d is invoked without any T3d relevant option

61

–dir - prints the overview of compilation directives (including input file line length limit
T3D INPUT BUFFER SIZE)

When a t3d parametric option is specified more than once only the last value is accepted.
This is not true for file name specification which is supposed to be unique.

The following command line options are not processed by T3d and are passed to the Elixir
graphic interface (if available and required)

–display (string) - redirects the output

–geometry (string) - specifies the geometry

–fn (string) - specifies the font

–font (string) - specifies the font

–defcmap - sets the default color map

–defvisual - sets the default visual

–bestvisual - sets the best visual

62

9 Terminal Output

During the runtime, the user is notified about completion of individual phases of the mesh
generation, about the number of generated mesh entities, about the nominal profile before
and after renumbering (if nodal renumbering was required), about the mesh quality (if
quality report was required), and about the time (if running without graphic interface) and
memory consumed by the mesh generation (only mesh entities are considered; the amount
of consumed memory is depending on T3d specific directive used for compilation).

The number of mesh entities is provided separately for the total number of mesh entities
in the mesh (total) and for the number of the mesh entities in the output of finite element
mesh (FE) including interface elements.

The nominal profile is defined as number of entries in the upper triangular part of the
connectivity matrix (Laplacian matrix of the mesh graph), which have at least one nonzero
entry with the same column index and smaller row index, increased by number of nodes.
In the case of quadratic elements, the full connectivity is considered (even if element free
interface is specified). The nominal profile multiplied by square of degrees of freedom per
node can be used to estimate memory requirements for characteristic matrix of the discretized
governing differential equation in the finite element analysis.

The quality report depends on the actually used –q option. By default, it provides the
arithmetic and harmonic means of selected quality quantity, the worst quality (including
the number of the worst element (in parenthesis), if its quality falls into the worst quality
interval), and the distribution (the first three lines of the quality report in terminal output
bellow) of the quality into three quality intervals expressed as the number of elements falling
into each interval (interval bounds are in parenthesis) and corresponding percentage of the
total number of elements. If required, a more detailed quality distribution is generated.

An example of terminal output follows:

T3D - Triangulation of 3D Domains

Copyright: Daniel Rypl, 1995-2008

=================================

t3d -i wheel.in -o wheel.out -d 10 -r 1

Program started 09:48:34

Options analyzed 09:48:34

Input data analyzed 09:48:34

Octree built 09:48:34

Vertices discretized 09:48:34

Curves discretized 09:48:34

Surfaces discretized 09:48:35

Regions discretized 09:48:49

Renumbering completed 09:48:53

63

Discretization done 09:48:53

Output data printed 09:48:53

Program finished 09:48:53

Number of nodes: 23264 (FE) 23264 (total)

Number of edges: 0 (FE) 141272 (total)

Number of trias: 0 (FE) 227269 (total)

Number of tetras: 109266 (FE) 109266 (total)

Nominal profile: 167094801 (old) 5786950 (new)

Quality of unstructured tetrahedra:

94122 : (1.000 - 0.750) 86.14 %

15000 : (0.750 - 0.500) 13.73 %

144 : (0.500 - 0.000) 0.13 %

0.85554 : arithmetic mean quality

0.84286 : harmonic mean quality

0.21759 : worst quality (9554)

Real time consumed 19.77 sec

Memory consumed 44700 kB

64

10 Quality Evaluation

The quality is evaluated separately for unstructured triangular, quadrilateral, tetrahedral,
and pyramid elements, for structured quadrilateral and hexahedral elements, and semistruc-
tured wedge and hexahedral elements. In the current implementation, iso elements are
excluded from the quality evaluation because their quality is always equal to 1. Also qual-
ity of wedges created from hexahedra due to degeneracy caused by resolving master-slave
relationship is not assessed. The mid-nodes of quadratic and quadratic bubble elements
are not considered for the quality evaluation. By default only elements on the output are
subjected to the quality evaluation. Note that interface elements are always excluded from
quality evaluation. Also note that surfaces, patches, and shells subjected to mapping which,
however, does not result in pure structured quadrilateral mesh (for example due to fixed
vertices to be accommodated, due to convexity check, or due to diagonal splitting) are also
excluded from quality assessment.

There are recognized three distinct quality quantities

• element shape based quality,

• dihedral angle based quality, and

• connectivity based quality.

The elements shape based quality is evaluated according to the following formulas (quality
is normalized Q ∈ 〈0, 1〉)

• unstructured triangular element

Qut =
4

3

√
3

A√
(a2 + b2 + c2)/3

2

where A is the area of the triangle and a, b, and c are the lengths of its sides. Maximum
quality is obtained for equilateral triangle.

• planar unstructured quadrilateral element

Qpuq =
4

3

√
Qut1Qut2Qut3Qut4

where Quti (i = 1, 2, 3, 4) are the qualities of the four unstructured triangular elements
obtained by two possible diagonal splittings of the assessed quadrilateral element. Max-
imum quality is obtained for square. Quality of nonconvex quadrilateral is set to zero.

• nonplanar unstructured quadrilateral element

Qnuq = Qpuq max(cosα13, 0) max(cosα24, 0)

where αij is the angle between the normals of the triangular elements obtained by
splitting the assessed quadrilateral element along diagonal connecting nodes i and j.

65

• planar structured quadrilateral element

Qpsq =
4∑4

i=1 1/(1− cos2 αi)
0.5
(min(d1, d3)

max(d1, d3)
+

min(d2, d4)

max(d2, d4)

)

where αi is angle between adjacent edges incident to node i and dj is the length of j-th
side. Maximum quality is obtained for rectangle. Quality of nonconvex quadrilateral
is set to zero.

• nonplanar structured quadrilateral element

Qnsq = Qpsq max(cosα13, 0) max(cosα24, 0)

where αij is the angle between the normals of the triangular elements obtained by
splitting the assessed quadrilateral element along diagonal connecting nodes i and j.

• unstructured tetrahedral element

Qutet =
3

4
4
√

108
V√

(A2 +B2 + C2 +D2)/4
3/2

where V denotes the volume of the tetrahedron and A, B, C, and D are the areas of
its faces. Maximum quality is obtained for equilateral tetrahedron.

• unstructured pyramid element

Qup =
3

8
4
√

108
V√

(A2 +B2 + C2 +D2)/4
3/2

where V denotes the volume of the pyramid and A, B, C, and D are the areas of
its triangular faces. The volume is taken as the average of volumes obtained for two
pairs of tetrahedra for two possible diagonal splittings of pyramid base face. Maximum
quality is obtained for equilateral pyramid.

• semistructured wedge element

Qssw =
Qut,b +Qut,t

2

∑3
i=1Qnsq,i

3

where Qut,b and Qut,t stand for the quality of bottom and top triangular bases and
Qnsq,i denotes the quality of the i-th quadrilateral side. Maximum quality is obtained
for prism with parallel equilateral bases of the same size and lateral rectangular sides
of the same size. If quality of any of the bases or sides is zero, the overall wedge quality
is set to zero.

66

• semistructured hexahedral element

Qssh =
Quq,b +Quq,t

2

∑4
i=1Qnsq,i

4

where Quq,b and Quq,t stand for the quality of bottom and top quadrilateral bases and
Qnsq,i denotes the quality of the i-th quadrilateral side. Maximum quality is obtained
for prism with parallel square bases of the same size and lateral rectangular sides of
the same size. If quality of any of the bases or sides is zero, the overall hexahedral
quality is set to zero.

• structured hexahedral element

Qsh =
6∑6

i=1 1/Qnsq,i

where Qnsq,i stands for the quality of the i-th quadrilateral side. Maximum quality is
obtained for cube. If quality of any of sides is zero, the overall hexahedral quality is
set to zero.

The dihedral angle based quality is evaluated according to the following formulas (quality is
normalized Q ∈ 〈0, 1〉)

• unstructured simplex element (triangle, tetrahedron)

Qs =
δmin
δmax

,

where δmin is the minimal and δmax the maximal dihedral angle in a particular element.
Maximum quality is obtained for equilateral elements.

• quadrilateral element (unstructured and structured)

Qq = 1.0−max(δmax −
π

2
,
π

2
− δmin)

/ π

2

where δmin and δmax are again the minimal and the maximal dihedral angle in the
assessed (convex) quadrilateral element. Maximum quality is obtained for rectangular
elements. Quality of nonconvex quadrilateral is set to zero.

The connectivity based quality compares the valence of individual internal nodes with the
optimal valence which is exactly 6 for triangular mesh, 4 for quadrilateral mesh, approxi-
mately 12 for tetrahedral mesh, and exactly 8 for hexahedral mesh. The connectivity based
quality is available only for unstructured meshes. For mixed 2D meshes, only internal nodes
shared by elements of the same type are considered. For mixed 3D meshes, all internal nodes
irrespectably of type of connected elements are considered which makes the results spurious.

67

11 Warnings and Error Messages

By default, warnings and error messages are printed on terminal output. They may be
suppressed using –Q, –Qout or –Qerr option or redirected to a file (together with standard
terminal output) using –g option. There are several types of errors each one with different
exit code

• option error – exit code 5,

• manipulation error – exit code 10,

• memory allocation error – exit code 15,

• file manipulation error – exit code 20,

• input data error – exit code 25,

• output data error – exit code 30,

• binary input data error – exit code 35,

• binary output data error – exit code 40, and

• mesh limit error – exit code 45.

Each error contains except its type also more or less specific explanation of the error. The
place where the error was generated can be identified by the line number, function name, and
module name. In the case of input/output data error, the line number and the input/output
file name is also provided. For binary input/ouput data error, only the binary input/output
file name is given.

68

12 Input File Examples

The format of input file is demonstrated on a simple example of a bus shelter.

12.1 Bus Shelter

This is a simple example demonstrating the syntax of T3d input records of basic entities such
as vertex, curve, surface, and patch. The vertex and curve numbering is shown in Figures 8a
and 8b. The geometry of curves 22 and 24 is given by the formulas for 180 degree circular
arc represented by cubic curve (see Appendix Section A.1.2). The roof of cylindrical shape is
conveniently represented by a surface cubic in one direction and linear in the other one thus
there are no inner control points of the surface control polygon. The vertical walls and the
horizontal bench are modelled by planar patches. The complete rendered model is depicted
in Figure 8c. The shaded view of the final mesh obtained via executing the command line
specified at the top of the input file is displayed in Figure 8d.

The actual content of the input file follows:

###############

Bus shelter

###############

command line

t3d -i shelter.in -o shelter.out -d 0.5

base vertices

vertex 1 xyz 0 0 0

vertex 2 xyz 5 0 0

vertex 3 xyz 0 2 0

vertex 4 xyz 5 2 0

roof vertices

vertex 11 xyz 0 0 2

vertex 12 xyz 5 0 2

vertex 13 xyz 0 2 2

vertex 14 xyz 5 2 2

columns (z-direction)

curve 1 vertex 1 11

curve 2 vertex 2 12

curve 3 vertex 3 13

curve 4 vertex 4 14 count 2

sill and beams (x-direction)

curve 11 vertex 1 2

curve 12 vertex 11 12

69

curve 13 vertex 13 14

sill, beams and arches (y-direction)

curve 21 vertex 1 3

curve 22 order 4 vertex 11 13

polygon 1 xyz 0 0 4 weight 0.3333333333

polygon 2 xyz 0 2 4 weight 0.3333333333

curve 23 vertex 12 14

curve 24 order 4 vertex 12 14

polygon 1 xyz 5 0 4 weight 0.3333333333

polygon 2 xyz 5 2 4 weight 0.3333333333

bench vertices

vertex 21 xyz 0 0 0.5 fixed curve 1

vertex 22 xyz 4 0 0.5

vertex 23 xyz 0.5 0.5 0.5

vertex 24 xyz 4 0.5 0.5

vertex 25 xyz 0 1.5 0.5

vertex 26 xyz 0.5 1.5 0.5

bench curves

curve 31 vertex 21 22 factor 0.5

curve 32 vertex 23 24

curve 33 vertex 25 26

curve 34 vertex 21 25 factor 0.5

curve 35 vertex 23 26

curve 36 vertex 22 24

walls

patch 1 normal 0 1 0 boundary curve -11 1 12 -2 \

fixed curve 31 size def

patch 2 normal 1 0 0 boundary curve 21 3 -22 -1 \

fixed curve 34 size def

patch 3 normal 1 0 0 boundary curve 23 -24 size def

roof

surface 1 curve 12 22 13 24

bench

patch 11 normal 0 0 1 boundary curve 31 -32 -33 -34 35 36 size def

70

a) b)

11 13

3

42

12 14

23 26

1

22 24

25
21

4

24

22

23

2131 32

36 11

35

34
33

13
1

3

2

12

c) d)

Figure 8: Bus shelter: a) vertex numbers, b) curve numbers, c) model, d) mesh.

71

A Modelling of Conics

In this appendix, the exact representation of conical arcs by rational Bezier curves of
quadratic and cubic degree is described in terms of the geometry of the control polygon
and weights of its vertices. Note that the formulas for cubic curves have been derived by
expansion of a quadratic curve and that negative values of weights have been considered.

A.1 Circular Arc

A.1.1 Quadratic Curve

δ = R
sin2 α

2

cos α
2

φ = R sin
α

2

s = R
sin α

2

cos α
2

ω0 = ω2 = 1 ω1 = cos
α

2

α ∈ (0; 2π) \ {π}

A.1.2 Cubic Curve

δ = 2R
sin2 α

2

1 + 2 cos α
2

φ = R
sinα

1 + 2 cos α
2

s = 2R
sin α

2

1 + 2 cos α
2

ω0 = ω3 = 1 ω1 = ω2 =
1 + 2 cos α

2

3

α ∈ (0; 2π) \ {4

3
π}

φ

α

δ

R

R

s

ω

ω

ω0

1

2

Figure 9: Circular arc - quadratic curve.

δ

α

φ

ω

s

3

R

R

ω

ω1

ω

s

2

0

Figure 10: Circular arc - cubic curve.

72

A.2 Elliptic Arc

A.2.1 Quadratic Curve

δ = b
sin2 α

2

cos α
2

φ = a sin
α

2

s =
sin α

2

cos α
2

√
a2 cos2

α

2
+ b2 sin2 α

2

ω0 = ω2 = 1 ω1 = cos
α

2

α ∈ (0; 2π) \ {π}

A.2.2 Cubic Curve

δ = 2 b
sin2 α

2

1 + 2 cos α
2

φ = a
sinα

1 + 2 cos α
2

s =
2 sin α

2

1 + 2 cos α
2

√
a2 cos2

α

2
+ b2 sin2 α

2

ω0 = ω3 = 1 ω1 = ω2 =
1 + 2 cos α

2

3

α ∈ (0; 2π) \ {4

3
π}

δ

φ

α

s

b

ω2

ω0

a

1ω

Figure 11: Elliptic arc - quadratic curve.

δ

φ

α

b

ω3

ω1

ω2

s ω0

a

Figure 12: Elliptic arc - cubic curve.

73

A.3 Parabolic Arc

A.3.1 Quadratic Curve

δ = 2al2 φ = l

s = l
√

4a2l2 + 1

ω0 = ω1 = ω2 = 1

A.3.2 Cubic Curve

δ =
4

3
al2 φ =

2

3
l

s =
2

3
l
√

4a2l2 + 1

ω0 = ω1 = ω2 = ω3 = 1

φ

δ

ω0

l

ω

ω1

s

al2

2

Figure 13: Parabolic arc - quadratic curve.

δ

φ

s

2al

ω2

ω1

ω0

ω3

l

Figure 14: Parabolic arc - cubic curve.

74

A.4 Hyperbolic Arc

A.4.1 Quadratic Curve

δ =
al2

b
√
b2 + l2

φ = l

s =
l
√
l2(a2 + b2) + b4

b
√
b2 + l2

ω0 = ω2 = 1

ω1 =

√
b2 + l2

b

A.4.2 Cubic Curve

δ =
2al2

b(b+ 2
√
b2 + l2)

φ =
2l
√
b2 + l2

b+ 2
√
b2 + l2

s =
2l
√
l2(a2 + b2) + b4

b(b+ 2
√
b2 + l2)

ω0 = ω3 = 1

ω1 = ω2 =
b+ 2

√
b2 + l2

3b

δ

φ

a

b

s

ω1

ω2

0ω

l

Figure 15: Hyperbolic arc - quadratic curve.

δ

φ

s

ω3

l

ω0

1ω

b

a

ω2

Figure 16: Hyperbolic arc - cubic curve.

75

B Modelling of Rotational Surfaces

B.1 Quadratic Expansion

ωα = cos
α

2
α ∈ (0; 2π) \ {π}

ω00 = ω20 = ω0 ω01 = ω21 = ω1 ω02 = ω22 = ω2 ω03 = ω23 = ω3

ω10 = ω0ωα ω11 = ω1ωα ω21 = ω2ωα ω13 = ω3ωα

α

ω

ω

ω

ω

3

2

1

0

α ω

ω

ω

ω ω
ω

ω
ω

ω ω00

01

11

10

20

02

21
03

13
23

o

o

ω22
ω12

Figure 17: Rotational surface - quadratic expansion.

The positions of control polygons points P 1j, are calculated according to the formulas in
Section A.1.1. Note that the revoluted curve can be generally three-dimensional.

76

B.2 Cubic Expansion

ωα =
1 + 2 cos α

2

3
α ∈ (0; 2π) \ {4

3
π}

ω00 = ω30 = ω0 ω01 = ω31 = ω1 ω02 = ω32 = ω2 ω03 = ω33 = ω3

ω10 = ω20 = ω0ωα ω11 = ω12 = ω1ωα ω21 = ω22 = ω2ωα ω13 = ω23 = ω3ωα

α

ω

ω

ω

ω

3

2

1

0

α ω

ω ω

ω00

01

o

o

ω10

30

31

ω0220ω

ω11 ω21

ω03

ω13 ω23
ω33

ω32

ω12
ω22

Figure 18: Rotational surface - cubic expansion.

The positions of control polygons points P ij, i = 1, 2, are calculated according to the
formulas in Section A.1.2. Note that the revoluted curve can be generally three-dimensional.

77

C Run-Time Visualization

When running T3d with Elixir graphic interface, the bottom menu palette provides the user
with all the facilities to control the run of T3d and to visualize the results. There are few
useful key and mouse bindings

Accelerators

Ctrl a fit all (all drawing windows are affected)
Ctrl p proceed run
Ctrl s stop run
Ctrl x exit (no results will be printed)

Fast viewing

B1 zoom window (choose two opposite corners)
Ctrl B1 pan view
Ctrl B2 zoom view
Shift B2 fit all (only active drawing window is affected)
Ctrl Shift B1 rotate view
B3 done

Graphics selection

B1 select
Ctrl B1 select by window (choose two opposite corners)
Shift B1 select nearest point

(confirm by B1 or select next one by Shift B1)
B2 accept selection
B3 reject selection

Handler control

Ctrl B3 suspend handler
B3 resume handler

B1, B2, and B3 stand for left, middle, and right mouse button.

In the case that an error in input data has been detected, the user is interactively asked
for starting a graphic interface (to view at least the part of input data which has been
successfully parsed). A time out is used to prevent blocking. Note that this is an optional
feature and might not be available.

78

	Model Representation
	Mesh Size Specification
	Model Input Data Format
	Input Record of a VERTEX
	Input Records of a CURVE
	Input Records of a SURFACE
	Input Record of a PATCH
	Input Record of a SHELL
	Input Record of a REGION
	Input Record of an INTERFACE
	Input Records Related to Boundary Mesh
	Input Record of Boundary Mesh File
	Input Record of Boundary Mesh VERTEX
	Input Record of Boundary Mesh CURVE
	Input Record of Boundary Mesh SURFACE

	Boundary Mesh Input Data Format
	Mesh Size Input Data Format
	Background Mesh Input Data Format
	Mesh Output Format
	Binary Mesh Output

	Command Line Options
	Terminal Output
	Quality Evaluation
	Warnings and Error Messages
	Input File Examples
	Bus Shelter

	Appendix
	Modelling of Conics
	Circular Arc
	Quadratic Curve
	Cubic Curve

	Elliptic Arc
	Quadratic Curve
	Cubic Curve

	Parabolic Arc
	Quadratic Curve
	Cubic Curve

	Hyperbolic Arc
	Quadratic Curve
	Cubic Curve

	Modelling of Rotational Surfaces
	Quadratic Expansion
	Cubic Expansion

	Run-Time Visualization

